• 제목/요약/키워드: LPS$NF-{\kappa}B$

검색결과 598건 처리시간 0.03초

Tolfenamic Acid Suppresses Inflammatory Stimuli-Mediated Activation of NF-κB Signaling

  • Shao, Hong Jun;Lou, Zhiyuan;Jeong, Jin Boo;Kim, Kui Jin;Lee, Jihye;Lee, Seong-Ho
    • Biomolecules & Therapeutics
    • /
    • 제23권1호
    • /
    • pp.39-44
    • /
    • 2015
  • Tolfenamic acid (TA) is a traditional non-steroid anti-inflammatory drug (NSAID) and has been broadly used for the treatment of migraines. Nuclear factor kappa B (NF-${\kappa}B$) is a sequence-specific transcription factor and plays a key role in the development and progression of inflammation and cancer. We performed the current study to investigate the underlying mechanisms by which TA suppresses inflammation focusing on NF-${\kappa}B$ pathway in TNF-${\alpha}$ stimulated human normal and cancer cell lines and lipopolysaccharide (LPS)-stimulated mouse macrophages. Different types of human cells (HCT116, HT-29 and HEK293) and mouse macrophages (RAW264.7) were pre-treated with different concentrations of TA and then exposed to inflammatory stimuli such as TNF-${\alpha}$ and LPS. Transcriptional activity of NF-${\kappa}B$, $l{\kappa}B-{\alpha}$-degradation, p65 translocation and mitogen-activated protein kinase (MAPK) activations were measured using luciferase assay and Western blots. Pre-treatment of TA repressed TNF-${\alpha}$- or LPS-stimulated NF-${\kappa}B$ transactivation in a dose-dependent manner. TA treatment reduced degradation of $l{\kappa}B-{\alpha}$ and subsequent translocation of p65 into nucleus. TA significantly down-regulated the phosphorylation of c-Jun N-terminal kinase (JNK). However, TA had no effect on NF-${\kappa}B$ signaling and JNK phosphorylation in HT-29 human colorectal cancer cells. TA possesses anti-inflammatory activities through suppression of JNK/NF-${\kappa}B$ pathway in different types of cells.

NF-κB-dependent Regulation of Matrix Metalloproteinase-9 Gene Expression by Lipopolysaccharide in a Macrophage Cell Line RAW 264.7

  • Rhee, Jae-Won;Lee, Keun-Wook;Kim, Dong-Bum;Lee, Young-Hee;Jeon, Ok-Hee;Kwon, Hyung-Joo;Kim, Doo-Sik
    • BMB Reports
    • /
    • 제40권1호
    • /
    • pp.88-94
    • /
    • 2007
  • Matrix metalloproteinase-9 (MMP-9) plays a pivotal role in the turnover of extracellular matrix (ECM) and in the migration of normal and tumor cells in response to normal physiologic and numerous pathologic conditions. Here, we show that the transcription of the MMP-9 gene is induced by lipopolysaccharide (LPS) stimulation in cells of a macrophage lineage (RAW 264.7 cells). We provide evidence that the NF-$\kappa$B binding site of the MMP-9 gene contributes to its expression in the LPS-signaling pathway, since mutation of NF-$\kappa$B binding site of MMP-9 promoter leads to a dramatic reduction in MMP-9 promoter activation. In addition, the degradation of l$\kappa$B$\alpha$;, and the presences of myeloid differentiation protein (MyD88) and tumor necrosis factor receptor-associated kinase 6 (TRAF6) were found to be required for LPS-activated MMP-9 expression. Chromatin immunoprecipitation (ChIP) assays showed that functional interaction between NF-$\kappa$B and the MMP-9 promoter element is necessary for LPS-activated MMP-9 induction in RAW 264.7 cells. In conclusion, our observations demonstrate that NF-$\kappa$B contributes to LPS-induced MMP-9 gene expression in a mouse macrophage cell line.

RAW 264.7 세포에서 왕지네 추출물의 항염 활성 (Anti-inflammatory activities of Scolopendra subspinipes mutilans in RAW 264.7 cells)

  • 박재현;이선령
    • Journal of Nutrition and Health
    • /
    • 제51권4호
    • /
    • pp.323-329
    • /
    • 2018
  • 만성 염증은 현대사회에서 다양한 질병을 유발하는 주요 원인으로 작용하기 때문에 항염증 활성을 가진 소재의 연구는 염증 관련 질병의 예방과 치료에 있어서 중요하다. 본 연구에서는 LPS에 의해 염증을 유도한 RAW 264.7 세포에서 제주왕지네 (Scolopendra subspinipes mutilans) 에탄올 추출물의 염증 조절 기전을 확인하여 항염증 소재로서의 가능성을 조사하였다. LPS에 의해 증가된 NO 생성과 iNOS 발현은 왕지네 추출물에 의해 감소되었고 pro-inflammatory cytokine으로 알려진 $IL-1{\beta}$, IL-6의 발현에서도 유사한 결과를 보였다. 왕지네 추출물은 LPS에 의해 유도된 $NF-{\kappa}B$의 핵으로의 전이와 $I{\kappa}B$의 분해를 동시에 억제하였고 $NF-{\kappa}B$ inhibitor의 처리는 NO 생성과 iNOS 발현을 더욱 억제하였다. 이상의 결과는 왕지네 추출물이 $NF-{\kappa}B$ 활성 조절을 통해 염증 반응의 지표로 사용되는 NO 생성 및 pro-inflammatory cytokine의 발현을 효과적으로 억제하여 항염 활성을 가진 소재로서의 가능성을 보여주는 것으로 염증에 의해 유발되는 다양한 질병을 효율적으로 제어하는 소재를 개발하는데 있어서 주요한 정보를 제공할 것으로 생각된다.

Curcumin suppresses the production of interleukin-6 in Prevotella intermedia lipopolysaccharide-activated RAW 264.7 cells

  • Kim, Sung-Jo
    • Journal of Periodontal and Implant Science
    • /
    • 제41권3호
    • /
    • pp.157-163
    • /
    • 2011
  • Purpose: Curcumin is known to exert numerous biological effects including anti-inflammatory activity. In this study, we investigated the effects of curcumin on the production of interleukin-6 (IL-6) by murine macrophage-like RAW 264.7 cells stimulated with lipopolysaccharide (LPS) from Prevotella intermedia, a major cause of inflammatory periodontal disease, and sought to determine the underlying mechanisms of action. Methods: LPS was prepared from lyophilized P. intermedia ATCC 25611 cells by the standard hot phenol-water method. Culture supernatants were collected and assayed for IL-6. We used real-time polymerase chain reaction to detect IL-6 mRNA expression. $I{\kappa}B-{\alpha}$ degradation, nuclear translocation of NF-${\kappa}B$ subunits, and STAT1 phosphorylation were characterized via immunoblotting. DNA-binding of NF-${\kappa}B$ was also analyzed. Results: Curcumin strongly suppressed the production of IL-6 at both gene transcription and translation levels in P. intermedia LPS-activated RAW 264.7 cells. Curcumin did not inhibit the degradation of $I{\kappa}B-{\alpha}$ induced by P. intermedia LPS. Curcumin blocked NF-${\kappa}B$ signaling through the inhibition of nuclear translocation of NF-${\kappa}B$ p50 subunit. Curcumin also attenuated DNA binding activity of p50 and p65 subunits and suppressed STAT1 phosphorylation. Conclusions: Although further study is required to explore the detailed mechanism of action, curcumin may contribute to blockade of the host-destructive processes mediated by IL-6 and appears to have potential therapeutic values in the treatment of inflammatory periodontal disease.

Lipopolysaccharide로 유발된 HepG2 세포의 염증반응에 대한 가감청간탕의 효과에 대한 연구 (The effect of Gagamchunggan-tang on lipopolysaccharide-induced expression of $NF{\kappa}-B$ downstream genes in HepG2 cell)

  • 김성환;서상호;홍상훈
    • 대한한방내과학회지
    • /
    • 제24권1호
    • /
    • pp.113-122
    • /
    • 2003
  • Objective : The aim of this study was to evaluate the efficacy of Gagamchunggan-tang on anti-inflammation reaction with lipopolysaccharide (LPS)-induced HepG2 cell. Method : We examined the effects of the Gagamchunggan-tang, a traditional drug for liver inflammation, on the process of lipopolysaccharide(LPS)-induced nuclear factor-${\kappa}Bp65(NF-{\kappa}Bp65)$ activation in HepG2 cell. SDS-PAGE, Western blotting, Immunofluorescence staining were studied. Results : Immunoblot analysis showed that the level of nucleic $NF-{\kappa}Bp65$ was rapidly up-regulated and cytosolic inhibitory $I-{\kappa}B{\alpha}$ was down-regulated by LPS challenge. While Gagamchunggan-tang inhibited an increase of $NF-{\kappa}Bp65$ and degradation of $I-{\kappa}B{\alpha}$ in HepG2 cell. Besides LPS-induced expression of a group of genes, such as tumor necrosis factor-${\alpha}(TNF-{\alpha})$, inducible nitric oxide synthase(iNOS) and cyclooxygenase-2 (COX-2), are repressed by Gagamchunggan-tang. It may be concluded that Gagamchunggan-tang attenuates the progress of LPS-induced inflammation by reduction of $NF-{\kappa}Bp65$ activation. Conclusion : The Gagamchunggan-tang would be useful as a therapeutic agent for endotoxin-induced liver disease.

  • PDF

Anti-Inflammatory Effect of Mangostenone F in Lipopolysaccharide-Stimulated RAW264.7 Macrophages by Suppressing NF-κB and MAPK Activation

  • Cho, Byoung Ok;Ryu, Hyung Won;So, Yangkang;Lee, Chang Wook;Jin, Chang Hyun;Yook, Hong Sun;Jeong, Yong Wook;Park, Jong Chun;Jeong, Il Yun
    • Biomolecules & Therapeutics
    • /
    • 제22권4호
    • /
    • pp.288-294
    • /
    • 2014
  • Mangostenone F (MF) is a natural xanthone isolated from Garcinia mangostana. However, little is known about the biological activities of MF. This study was designed to investigate the anti-inflammatory effect and underlying molecular mechanisms of MF in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MF dose-dependently inhibited the production of NO, iNOS, and pro-inflammatory cytokines (TNF-${\alpha}$, IL-6, and IL-$1{\beta}$) in LPS-stimulated RAW264.7 macrophages. Moreover, MF decreased the NF-${\kappa}B$ luciferase activity and NF-${\kappa}B$ DNA binding capacity in LPS-stimulated RAW264.7 macrophages. Furthermore, MF suppressed the NF-${\kappa}B$ activation by inhibiting the degradation of $I{\kappa}B{\alpha}$ and nuclear translocation of p65 subunit of NF-${\kappa}B$. In addition, MF attenuated the AP-1 luciferase activity and phosphorylation of ERK, JNK, and p38 MAP kinases. Taken together, these results suggest that the anti-inflammatory effect of MF is associated with the suppression of NO production and iNOS expression through the down-regulation of NF-${\kappa}B$ activation and MAPK signaling pathway in LPS-stimulated RAW264.7 macrophages.

Nuclear Factor-${\kappa}B$ Dependent Induction of TNF-${\alpha}$ and IL-$1{\beta}$ by the Aggregatibacter actinomycetemcomitans Lipopolysaccharide in RAW 264.7 Cells

  • Na, Hee Sam;Jeong, So Yeon;Park, Mi Hee;Kim, Seyeon;Chung, Jin
    • International Journal of Oral Biology
    • /
    • 제39권1호
    • /
    • pp.15-22
    • /
    • 2014
  • Aggregatibacter actinomycetemcomitans is an important pathogen in the development of localized aggressive periodontitis. Lipopolysaccharide (LPS) is a virulent factor of periodontal pathogens that contributes to alveolar bone loss and connective tissue degradation in periodontal disease. Our present study was designed to investigate the cytokine expression and signaling pathways regulated by A. actinomycetemcomitans LPS (Aa LPS). Cytokine gene expression profiling in RAW 264.7 cells was performed by microarray analyses. The cytokine mRNA and protein levels and related signaling pathways induced by Aa LPS were measured by RT-PCR, ELISA and western blotting. Microarray results showed that Aa LPS strongly induced the expression of NF-${\kappa}B$, NF-${\kappa}B$-related genes, inflammatory cytokines, TNF-${\alpha}$ and IL-$1{\beta}$ in RAW 264.7 cells. NF-${\kappa}B$ inhibitor pretreatment significantly reduced the levels of TNF-${\alpha}$ and IL-$1{\beta}$ mRNA and protein. In addition, the Aa LPS-induced TNF-${\alpha}$ and IL-$1{\beta}$ expression was inhibited by p38/JNK MAP kinase inhibitor pretreatment. These results show that Aa LPS stimulates TNF-${\alpha}$ and IL-$1{\beta}$ expression through NF-${\kappa}B$ and p38/JNK activation in RAW 264.7 cells, suggesting the essential role of this pathway in the pathogenesis of localized aggressive periodontitis.

Inhibition of LPS-induced NO Production and NT-$\textsc{k}B$ Activation by a Sesquiterpene from Saussurea lappa

  • Jin, Mirim;Lee, Hwa-Jin;Ryu, Jae-Ha;Chung, Kyu-Sun
    • Archives of Pharmacal Research
    • /
    • 제23권1호
    • /
    • pp.54-58
    • /
    • 2000
  • To elucidate the molecular mechanisms for the suppression of LPS-induced nitric oxide (NO) production by a dehydrocostus lactone (DL) from Saussurea lappa, we examined the preventive effect of this compound on $NF-{\kappa}B$ activation in LPS-treated RAW 264.7 macrophages and U937 human monocytic cells. The results suggest that the suppression of NO production is mediated by the inhibitory action on the i-NOS gene expression through the inactivation of $NF-{\kappa}B$ and this sesquiterpene lactone can act as a pharmacological inhibitor of the $NF-{\kappa}B$ activation.

  • PDF

NF-kappaB 프로모터 활성을 억제하는 식물추출물 (Herbal Extracts as a NF-kappaB Inhibitor)

  • 박덕훈;이종성;정은선;현창구;이지영;허성란;고재숙;이희경;백지훈;유병삼;문지영;김주호
    • 대한화장품학회지
    • /
    • 제32권3호
    • /
    • pp.135-140
    • /
    • 2006
  • Nucler factor-kappa B (NF-kappaB) 프로모터는 염증성 질환을 유도하는 호염증성 시토카인의 발현에 중요한 역할을 수행하는 전사인자 중의 하나이다. 본 실험에서는 200 여종의 식물추출물들로부터 항염효능이 있는 추출물을 선발하기 위해 NF-kappaB 리포터 실험을 수행하였다. NF-kappaB 리포터 실험결과, 12종의 식물추출물, 즉 개나리, 고추잎, 박하, 뱀딸기, 뽕나무, 삼백초, 솔잎, 양애줄기, 약쑥, 어성초, 왕벚꽃가지, 조릿대 등이 lipopolysaccharide (LPS)에 의해 유도된 NF-kappaB 프로모터 활성을 농도의존적으로 억제하는 것을 확인하였다. 이들 12종의 식물추출물이 호염증성 시토카인 발현에도 동일한 효과를 나타내는지 알아보기 위해 tumor necrosis factor-alpha (TNF alpha)와 인터루킨-8에 대한 ELISA실험을 실시하였다. ELISA실험 결과, NF-kappaB 리포터 실험결과와 동일하게, TNF-alpha와 인터루킨-8 생산이 12종 식물추출물 모두에서 감소됨을 관찰하였다. 이러한 실험결과는, 12종의 식물 추출물에서 보여지는 호염증성 시토카인 억제효과가 NF-kappaB 프로모터 활성억제를 통해 이루어지고 있음을 시사한다. 또한, 이들 12종 식물은 diphenyl-p-picrylhydrazyl (DPPH) assay를 통해 살펴본 결과 높은 항산화 활성도 있음을 확인하였다. 이상의 결과로부터, 12종의 식물 추출물은 염증성 피부질환 전용 화장품 제형에서 항염 및 자극완화 소재로 응용될 수 있음을 확인하였다.

Beauvericin, a cyclic peptide, inhibits inflammatory responses in macrophages by inhibiting the NF-κB pathway

  • Yoo, Sulgi;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권4호
    • /
    • pp.449-456
    • /
    • 2017
  • Beauvericin (BEA), a cyclic hexadepsipeptide produced by the fungus Beauveria bassiana, is known to have anti-cancer, anti-inflammatory, and anti-microbial actions. However, how BEA suppresses macrophage-induced inflammatory responses has not been fully elucidated. In this study, we explored the anti-inflammatory properties of BEA and the underlying molecular mechanisms using lipopolysaccharide (LPS)-treated macrophage-like RAW264.7 cells. Levels of nitric oxide (NO), mRNA levels of transcription factors and the inflammatory genes inducible NO synthase (iNOS) and interleukin (IL)-1, and protein levels of activated intracellular signaling molecules were determined by Griess assay, semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), luciferase reporter gene assay, and immunoblotting analysis. BEA dose-dependently blocked the production of NO in LPS-treated RAW264.7 cells without inducing cell cytotoxicity. BEA also prevented LPS-triggered morphological changes. This compound significantly inhibited nuclear translocation of the $NF-{\kappa}B$ subunits p65 and p50. Luciferase reporter gene assays demonstrated that BEA suppresses MyD88-dependent NF-${\kappa}B$ activation. By analyzing upstream signaling events for $NF-{\kappa}B$ activation and overexpressing Src and Syk, these two enzymes were revealed to be targets of BEA. Together, these results suggest that BEA suppresses $NF-{\kappa}B$-dependent inflammatory responses by suppressing both Src and Syk.