• Title/Summary/Keyword: LPL Activity

Search Result 44, Processing Time 0.022 seconds

Supplementation Effects of $C_{18:2}$ or $C_{18:3}$ Rich-oils on Formations of CLA and TVA, and Lipogenesis in Adipose Tissues of Sheep

  • Choi, S.H.;Lim, K.W.;Lee, H.G.;Kim, Y.J.;Song, Man K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1417-1423
    • /
    • 2007
  • The present study was conducted to investigate the supplementation effects of $C_{18:2}$ rich-soybean oil or $C_{18:3}$ rich-perilla oil (7% of total diet, DM basis) for 12 weeks on plasma metabolites, fatty acid profile, in vitro lipogenesis, and activities of LPL and FAS in adipose tissue of sheep. The treatments were basal diet (Control), $C_{18:2}$ rich-soybean oil supplemented diet (SO-D) and $C_{18:3}$ rich-perilla oil supplemented diet (PO-D). All the sheep were fed the diets consisting of roughage to concentrate in the ratio of 40:60 (DM basis). Oil supplemented diets (SO-D and PO-D) slightly increased contents of triglyceride (TG) and total cholesterol (TC), proportions of both cis-9 trans-11 and trans-10 cis-12 CLA and TVA, but lowered (p<0.01) those of $C_{18:0}$ compared to the control diet. No differences were observed in the contents of TG and TC and proportions of fatty acids in plasma between supplemented oils. Oil supplemented diets slightly increased the proportions of cis-9 trans-11 and trans-10 cis-12 types of CLA in subcutaneous adipose tissue of sheep compared to the control diet. The rate of lipogenesis with acetate was higher (p<0.01) for intermuscular- and subcutaneous adipose tissues than that for intramuscular adipose tissue, while that with glucose did not differ among fat locations in sheep fed SO-D. No differences were observed in the rate of lipogenesis between substrates in all fat locations. The rates of lipogenesis with glucose increased only in the intermuscular- (p<0.01) and subcutaneous adipose tissue (p<0.005) compared to those with acetate. The rates of lipogenesis with acetate were the highest in the intermuscular and intramuscular adipose tissue of the sheep fed PO-D. Oil supplemented diets slightly increased the rate of lipogenesis with glucose for all fat locations. Supplementation of oils to the diet numerically increased the fatty acid synthase activity but did not affect the lipoprotein lipase activity in subcutaneous adipose tissue.

Leaves of Cudrania tricuspidata on the Shoot Positional Sequence Show Different Inhibition of Adipogenesis Activity in 3T3-L1 Cells (꾸지뽕 신초 엽위별 잎 추출물의 항비만 효과)

  • Park, Ju Ha;Guo, Lu;Kang, He Mi;Son, Beung Gu;Kang, Jum Soon;Lee, Yong Jae;Park, Young Hoon;Je, Byoung Il;Choi, Young Whan
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.209-218
    • /
    • 2021
  • This study aimed to evaluate the anti-obesity effects of Cudrania tricuspidata leaf extract in the order of leaf development on the shoot (L0, L1, L2, L3, L4, and L5). The leaves at the apex of a Cudrania tricuspidata shoot were classified as L0; the next leaves of the apex were classified as L1, L2, L3, and L4 from highest to lowest; and the lowest leaf was classified as L5. A series of 70% ethyl alcohol leaf extracts were screened for the inhibitory effects of adipogenesis in 3T3-L1 preadipocytes. We found that the apical leaf extract of Cudrania tricuspidata (CTL0) was the most effective. Next, a study was conducted on the inhibitory action mechanism of CTL0. Treatment with CTL0 significantly suppressed the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by the decrease in lipid droplet content observed with Oil Red O staining. Treatment with 12.5 ㎍/ml, 25 ㎍/ml, and 50 ㎍/ml of CTL0 significantly reduced the lipid droplet content. Glucose and cellular triglyceride concentrations were reduced in the 3T3-L1 cells on the CTL0-treated medium compared to the differentiation medium (DM control, DMEM + insulin + dexamethasone + rosiglitazone). Compared with DM, CTL0 significantly inhibited the expression of key pro-adipogenic transcription factors, including peroxisome proliferator-activated receptor γ (PPARγ), LPL, A-FABP, and Glut4. These findings show that CTL0 extract has potent anti-obesity effects.

Anti-inflammatory Effects of Aurantio-obtusin isolated from Cassia tora L. in RAW264.7 Cells (결명자로부터 분리된 Aurantio-obtusin의 항염증 활성)

  • Lee, Ki Ho;Jang, Ji Hun;Woo, Kyeong Wan;Nho, Jong Hyun;Jung, Ho Kyung;Cho, Hyun Woo;Yong, Ju Hyun;An, Byeongkwan
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.1
    • /
    • pp.11-17
    • /
    • 2019
  • Cassia tora L. have been used as a folk medicine in Korea. This study investigated anti-inflammatory effect of aurantio-obtusin isolated from C. tora. We isolated aurantio-obtusin from 50% ethanol extracts of C. tora L. We investigated the anti-inflammatory effects of aurantio-obtusin on the lipopolysaccharide (LPS)-stimulated inflammatory response in murine macrophage cell line (Raw 264.7). To investigate the cytotoxicity of aurantio-obtusin on RAW 264.7 cells, MTS assay was performed. RAW 264.7 cells were treated with aurantio-obtusin at different concentrations (12.5, 25, 50, $100{\mu}M$) for 30 h. The result showed that aurantio-obtusin had no cytotoxic effect in a concentration range of $12.5-100{\mu}M$. To determine the effect of aurantio-obtusin on LPS-induced NO production, the NO concentration measurement was performed. RAW 264.7 cells were treated with aurantio-obtusin at 12.5, 25, 50 and $100{\mu}M$ for 24 h, and the results showed that the NO production of aurantio-obtusin-treated cells compared to LPS alone treated group was significantly decreased in a dose-dependent manner. Pretreatment of aurantio-obtusin inhibited LPS-induced NO production in a dose-dependent manner. To find out inhibitory mechanisms of aurantio-obtusin on inflammatory mediators, we examined the $PGE_2$ pathways. As a result, $PGE_2$ were decreased in a dose-dependent manner by aurantio-obtusin. The release of interleukin-$1{\beta}$ (IL-$1{\beta}$) and IL-6 were also reduced. Moreover, aurantio-obtusin suppressed LPL-induced $I{\kappa}B-{\alpha}$ degradation. These results suggest that the down regulation of NO, $PGE_2$, IL-$1{\beta}$ and IL-6 expression by aurantio-obtusin are achieved by the downregulation of NF-${\kappa}B$ activity.

Pro-apoptotic and Anti-adipogenic Effects of Proso Millet (Panicum miliaceum) Grains on 3T3-L1 Preadipocytes (기장(Panicum miliaceum)의 마우스 3T3-L1 세포에 대한 에폽토시스 유발 및 지방세포형성 억제 효능)

  • Jun, Do Youn;Lee, Ji Young;Han, Cho Rong;Kim, Kwan-Pil;Seo, Myung Chul;Nam, Min Hee;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.505-514
    • /
    • 2014
  • To examine the anti-obese activity of miscellaneous cereal grains, 80% ethanol extracts from eight selected miscellaneous cereal grains were compared for their cytotoxic effects on 3T3-L1 murine preadipocytes. The ethanol extract of proso millet exhibited the highest cytotoxicity. Further fractionation of the ethanol extract with methylene chloride, ethyl acetate, and n-butanol showed that the cytotoxicity of the ethanol extract was mainly partitioned into the butanol fraction. As compared with differentiated mature adipocytes, 3T3-L1 preadipocytes were more susceptible to the cyctotoxicity of the butanol fraction. When each organic solvent fraction (25 ${\mu}g/ml$) was added during the differentiation period for 6 days, the cell viability was not affected significantly except for the butanol fraction, but the intracellular lipid accumulation declined to a level of 81.5%~50.3% of the control. The Oil Red O staining data also demonstrated that the ethanol extract as well as the butanol fraction could inhibit the differentiation of 3T3-L1 preadipocytes into mature adipocytes. The presence of the butanol extract during the induced adipocytic differentiation also resulted in a significant reduction in the expression levels of critical adipogenesis mediators $(C/EBP{\alpha}$, $PPAR{\gamma}$, aP2, and LPL) to a barely detectable or undetectable level and the cells retained the fibroblast-like morphology of 3T3-L1. In 3T3-L1 cells, the cytotoxicity of the butanol fraction (50-100 ${\mu}g/ml$) was accompanied by mitochondrial membrane potential (${\Delta}{\psi}m$) loss, caspase-3 activation, and PARP degradation. Taken together, these results indicate that proso millet grains possess pro-apoptotic and anti-adipocytic activities toward adipocytes, which can be applicable to prevention of obesity.