• Title/Summary/Keyword: LPG Storage Tanks

Search Result 19, Processing Time 0.019 seconds

An Estimation of the Consequence Analysis for an Underground Installation of the LPG Storage Tanks (소형 LPG 저장탱크 매몰 설치에 대한 피해영향평가)

  • Song, Dong-Woo;Jun, Woon-Young;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.62-67
    • /
    • 2015
  • In this paper, the consequence analysis has been evaluated for the damage effects of the LPG storage tanks when they are installed on the ground or underground. They should be performed to identify measures to reduce risks for the LPG storage tanks which are more widely used. In order to conduct a damage effect evaluation of the LPG storage tanks installed underground, FDS was used to simulate the LPG storage tanks installed and housed within a facility. The maximum pressure of the storage facilities for the LPG storage tanks has been calculated from the FDS, and it's results are used as an input variable for Phast which is a commercial software for evaluating the damage effects. Getting results from the consequence analysis and computational simulations(diffusion range of LFL and UFL, jet fire or explosions) were quantitatively presented for the damage effects.

A Study on the Prediction of the Maximum Evaporation Rates from LPG Storage Tanks (소형저장탱크의 가스발생능력에 관한 연구)

  • Lee Kyung-Sik;Yu Kwang-Soo;Jo Young-Do;Park Kyo-Shik
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.7-12
    • /
    • 2006
  • The quantity of gas which can be supplied by LPG storage tank become a standard of selection. In the absence of the maximum evaporation rates from LPG storage tanks by tank capacity, continuation using time, air temperature, it is in a problem for the dissemination of LPG Storage tanks. In this paper, we showed the maximum evaporation rates from LPG storage tanks by tank capacity, air temperature, continuous using time and remaining level.

  • PDF

Development of a Tool for Predicting the Occurrence Time of BLEVE in Small LPG Storage Tanks (LPG소형저장탱크 BLEVE 발생 시점 예측 툴 개발)

  • Chae, Chung Keun;Lee, Jae Hun;Chae, Seung Been;Kim, Yong Gyu;Han, Shin Tak
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.74-83
    • /
    • 2020
  • In Korea, about 110,000 LPG small storage tanks of less than three tons have been installed in restaurants, houses and factories, and are used as LPG supply facilities for cooking, heating and industrial use. In the case of combustible liquefied gas storage tanks, the tank may rupture due to the temperature increase of the tank steel plate (approximately 600℃) even when the safety valve is operating normally, causing large-scale damage in an instant. Therefore, in the event of a fire near the LPG small storage tank, it is necessary to accurately predict the timing of the BLEVE(Boiling Liquid Expanding Vapour Explosion) outbreak in order to secure golden time for lifesaving and safely carry out fire extinguishing activities. In this study, we have first investigated the results of a prior study on the prediction of the occurrence of BLEVE in the horizontal tanks. And we have developed thermodynamic models and simulation program on the prediction of BLEVE that can be applied to vertical tanks used in Korea, have studied the effects of the safety valve's ability to vent, heat flux strength of external fires, size of tanks, and gas remaining in tanks on the time of BLEVE occurrence and have suggested future utilization measures.

A Study on Investigation of LPG Supply System by Bulk Lorry in Korea (벌크로리를 통한 국내 LPG 공급시스템 실태조사에 관한 연구)

  • Lee, Hwa-young;Lee, Min-kyung;Kim, Jeong-hwan;Kil, Seong-hee;Kim, Young-gyu;Kim, Hong-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.10-16
    • /
    • 2020
  • In the safety control and business of liquefied petroleum gas act, LPG supply using bulk lorry of liquefied petroleum gas dealer is possible only to small storage tanks of less than 3 tons in bulk lorry less 10 tons. The government has announced plans to extend the bulk lorry supply to storage tanks of less than 10 tons, reflecting improved safety management capabilities of liquefied petroleum gas dealer. Therefore, in order to supply LPG to the storage tank stably through the bulk lorry, the technical evaluation of the existing bulk lorry LPG supply system is needed. In this study, we will investigate the status of LPG supply system in Korea through bulk lorry and investigate safe LPG supply method. First, we conducted a survey on the supply of LPG storage tanks through bulk lorry to related companies to collect basic data. Based on the results of the surveys, we will conduct field surveys to provide basic data for stable LPG supply.

A Study on Damage Analysis Safety Distance Setting for LPG BLEVE (LPG BLEVE 피해분석 및 안전거리 설정에 관한 연구)

  • Kim, Jonghyuk;Lee, Byeongwoo;Kim, Jungwook;Jung, Seungho
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.25-31
    • /
    • 2020
  • Boiling Liquid Expanding Vapor Explosion(BLEVE) can cause not only economic damage to the plant but also serious casualties. LPG accidents account for 89.6 percent of all accidents caused by gas leaks in Korea over the past nine years, while casualties from accidents also account for 73 percent of all accidents, according to statistics from the Korea Gas Safety Corporation. In addition, a potential explosion and a fire accident from one LPG storage tank may affect the nearby storage tanks, causing secondary and tertiary damage (domino effect). The safety distance standards for LPG used by LPG workplaces, charging stations, and homes in Korea have become stricter following the explosion of LPG charging stations in Bucheon. The safety distance regulation is divided into regulations based on the distance damage and the risk including frequency. This study suggests two approaches to optimizing the safety distance based on the just consequence and risk including frequencies. Using the Phast 7.2 Risk Assessment software by DNV GL, the explosion overpressure and heat radiation were derived according to the distance caused by BLEVE in the worst-case scenario, and accident and damage probability were derived by considering the probit function and domino effect. In addition, the safety distance between LPG tanks or LPG charging stations was derived to minimize damage effects by utilizing these measures.

Impact Range Analysis of Small LPG Storage Tank Explosions at Highway Rest Areas (고속도로 휴게소 소형 LPG 저장탱크 폭발에 따른 영향범위 분석)

  • Seung duk Jeon;Soon Beom Lee;Jai Young Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.319-327
    • /
    • 2023
  • This study analyzes the risks of explosions of small LPG storage tanks installed at highway rest areas. For this purpose, the ranges of the effect of thermal radiation and overpressure caused by the BLEVE(Boiling Liquid Expansion Vapor Explosion)and VCE(Vapor Cloud Explosion) of a 2900-kg small LPG storage tank installed at highway rest areas were quantitatively evaluated by applying the Areal Location of Hazardous Atmospheres program. The ranges of influence of the derived explosion overpressure and thermal radiation were found to have a maximum radii of 336 m and 423 m, respectively. The study determined that those within 269 m could be severely injured by an explosion overpressure of 3.5 psi, and fatalities from thermal radiation of 10 kw/m2 could occur within 192 m of the exploded storage tank. The safety management plan for the LPG storage tank was discussed while considering the auxiliary facilities of highway rest areas and the extent of the damage impact. These research results will help improve safety accident prevention regulations considering the environment and facilities of the rest areas as well as the safety management of small LPG storage tanks installed at highway rest areas.

Analysis of LPG Facility Siting Considering BLEVE (BLEVE를 고려한 LPG 시설 Siting 분석)

  • Kim, Taebeom;Lee, Kyounglim;Lee, Juhee;Jung, Seungho;Lee, Kunmo
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.26-32
    • /
    • 2016
  • In previous studies on LPG siting in Korea, the scope have not included the probability of the secondary events of adjacent LPG tanks or structures from an explosion source. Therefore, it is essential to first identify the phenomenon which can be caused by BLEVE and then, properly assess their effects to each target including secondary event. In this study, we calculated the effects from a potential BLEVE of 15 ton LPG tank causing damages of storage tanks (LPG), structures and human using Phast ver. 6.7 and then suggested three risk zones (Zone I, II, III) assuming the consequences such as overpressure, heat radiation and missile effect by fragments. Zone I and II are divided at the line of 50% occurrence of the secondary event. Zone II and III are divided by Individual Risk(IR). The zone approach in this study can be used for more effective and safer Land Use Planning (LUP) for the future.

A Study on the Safety of Small LPG Storage Tanks at External Fires (외부화재시 LPG 소형저장탱크의 안전성에 관한 연구)

  • Yim, Ji-Pyo;Ma, Byung-Chol;Chung, Chang-Bock
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.64-72
    • /
    • 2015
  • The purpose of this study is to study the safety of a small LPG storage tank with a capacity less than 3 ton when it is exposed to an external fire. First, simulation studies were carried out using ASPEN Plus and PHAST to demonstrate that overpressurization in the tank can be relieved by discharging the LPG through an adequately sized safety valve, but the release may lead to the secondary risk of fire and explosion around the tank. Next, the temporal variations of the temperatures of the lading and tank wall were obtained using AFFTAC, which showed that the tank wall adjacent to the vapor space could be overheated in about 11 min to such a point that the weakened strength might cause a rupture of the tank and subsequent BLEVE. The consequences of the BLEVE were estimated using PHAST. Finally, several practical measures for preventing the hazards of overheating were suggested, including an anti-explosion device, sprinkling system, insulation, heat-proof coating, and enhanced safety factor for tank fabrication. The effectiveness of these measures were examined by simulations using AFFTAC and ASPEN Plus.

Optimization of Explosion Prevention for LPG Storage Tanks (폭발방지를 고려한 LPG 저장탱크 최적설계)

  • Leem, Sa-Hwan;Huh, Yong-Jeong;Son, Seok-Woo;Lim, Jae-Ki;Lee, Jong-Rark
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.897-903
    • /
    • 2010
  • Used gas to the vehicle fuel are the problems of the 'survival' beyond the 'quality of life' improvements and revive a new paradigm of 'sustainable development' which pursues economic development in harmony with environmental conservation. However, the fatalities caused by explosions and fires increases every year with the increase in the use of LPG; gas accidents in large-scale storage facilities also cause severe damage to property. In this study, a suitable storage tank is designed in which the surface area of the fuel exposed to flames is minimized in order to prevent explosions; thus, the occurrences of explosions in underground storage tanks can be minimized. According to the optimum design of storage tank obtained in this study, underground containment space was minimized; the minimized diameter and length of a 20-ton storage tank was 3 m and 4.83 m, respectively. Thus, safety was ensured since surface area exposed to flames decreased by 89.4%, which is less than the exposed surface area in the currently used storage tanks.