• Title/Summary/Keyword: LPG 공정

Search Result 44, Processing Time 0.023 seconds

Standard Process Design of Remanufacturing of LPG Vaporizer by using FMEA (FMEA를 이용한 LPG 기화기의 재제조 표준공정 설계)

  • Mok, Hak-Soo;Song, Hyun-Su;Kim, Deuk-Jung;Hong, Jin-Eui;Lee, Seung-Min;Ahn, Jung-Tae
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.54-62
    • /
    • 2014
  • This paper present a improved process for remanufacturing of LPG vaporizer through Failure Mode and Effect Analysis(FMEA). Based on the failure causes analysis and classification of faults that occur after the initial failure of LPG vaporizer remanufacturing, suggests improvements for high R.P.N. Derive the improvement for higher cumulative frequency of each process, proposes the overall improvement of a current process for establish a standard LPG remanufacturing process.

공정위 LPG업계 조사결과

  • Korea LPGas Industry Association
    • LP가스
    • /
    • s.82
    • /
    • pp.21-24
    • /
    • 2002
  • 공정위는 올초 산업별 시장개선사업으로 LPG분야를 선정하고, 후속작업으로 3월부터 5월까지 LPG수입.충전.판매업계를 대상으로 실태조사를 실시한 바 있으며, 지난 11일 그 결과를 발표했다.

  • PDF

LPG Dispensing Control System (LPG 충전 제어시스템)

  • 이상훈;최병철;박남철
    • Proceedings of the KAIS Fall Conference
    • /
    • 2000.10a
    • /
    • pp.113-113
    • /
    • 2000
  • LPG 및 석유류는 온도에 따라서 유량의 변화가 LPG의 경우는 ±0.23%/℃, 무연은 ±0.11%/℃, 등유는 ±0.10%/℃, 경유의 경우는 ±0.09%/℃로 특히 LPG의 경우가 그 변화가 심하므로 정확한 충전량을 계량하는 것이 중요하다. 이는 공정거래 확립의 차원에서 공급자와 소비자 입장에서 반드시 요구되는 사항이다. 이를 위해 본 논문에서는 LPG 충전기의 충전제어 및 자동 온도 보정의 알고리즘을 개발하고 이를 프로그래밍한 후 온도센서와 16-bit 마이크로프로세서(intel 80C196)로 자동 온도 보정이 가능한 LPG 충전기의 충전제어 시스템을 설계 및 제작하였다. 설계 제작된 시스템은 프로세서부, I/O 입ㆍ출력부, VFD(vacuum fluorescent display) 디스플레이 구동부로 구성된다. 충전제어 동작은 LPG 유량계의 encoder로부터의 유량(유속)신호와 기차 보정값 및 15℃를 기준으로 한 온도 센서부의 온도 보정값을 입력받아 솔레노이드 밸브를 제어하여 충전을 제어하게 된다. 온도 보정은 80C196 프로세서의 내부 10-bit A/D 변환기를 사용하여 0.5℃ 분해능으로 온도제어를 할 수 있다. VFD 디스플레이는 유량, 금액, 단가가 표시되며 그 값을 누적시켜 일계, 월계를 알 수 있게 하였다. 그 외에 시스템 진단기능 및 컴퓨터통신, POS 통신이 가능하도록 하였다. 제작된 시스템을 LPG 충전기에 실장하여 시험한 결과 목표한 정확도로 유량이 제어됨을 알 수 있었다.

Safety Enhancement of LPG Terminal by LOPA & SIF Method (LOPA 및 SIF기법에 의한 LPG 인수기지의 안전성향상에 대한 연구)

  • Lee, Il Jae;Kim, Rae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.431-439
    • /
    • 2015
  • The methods which decrease the accident hazards of LPG(Liquefied Petroleum Gas) terminal on the basis of butane & propane storage tanks by applying HAZOP(Hazard and Operability), LOPA(Layer of Protection Analysis) and SIL(Safety Integrity Level) are suggested. The accident scenarios were derived by analyzing latent risks through the HAZOP. The scenarios which would have the big damage effect in accidents were selected and then LOPA was assessed by analyzing IPL(Independent Protection Layer) about the correspond accident scenarios. The improved methods were proposed on the basis of level of SIF(Safety Instrumented Functions) as a IPL considering satisfied condition of risk tolerance criteria($1.0{\times}10^{-05}/y$). In addition, The proposed IPLs were basis on the economic analysis. The effect of SIF as a IPL considering the changes of accident frequency was studied in case of the accident scenarios derived from the concerned process.

A Study on the Combustion and Explosion Characteristics According to Mixing Ratio of Gas (가연성 가스의 혼합비에 따른 연소 및 폭발특성에 관한 연구)

  • Oh Kyu-hyung
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.50-56
    • /
    • 2005
  • Liquefied Petroleum 6aso-PG) is combustible gas which used for fuel for domestic and automobiles. A research for adjust a component of LPG to improve the fuel characteristics and control the manufacturing process of that is carrying in petrochemical industry. Some kinds of LPG blending is considered as a adjusting method to control component of LPG. LPG is mainly propane for domestic use and butane for automobile use but propylene and butylene also a kind of LPG Change of explosion characteristic and combustion gas component by mixing of propylene in propane and butane was measured and analysed in this research. Based on the result of experiment, it was found that explosion pressure and pressure rise rate was slightly increased with mixing rate of propylene and it was considered the possibility of increasing the CO concentration in combustion gas with increase the mixing rate of propylene.

  • PDF

A Study on Characteristics of Residue in Liquefied Petroleum Gas using Automotive Fuel (자동차용 액화석유가스(LPG) 잔류물질의 특성 연구)

  • Jang, Yoon-mi;Park, Tae-seong;Kang, Hyung-kyu;Yim, Eui Soon;Lee, Jung-min;Na, Byung-gi
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.816-825
    • /
    • 2018
  • Recently, it was emerged to need the necessity of LPG residues management due to the finding some substances such as rust. This study is performed to investigate the characteristics of LPG residues in the production and distribution stage of LPG. For the qualitative analysis of LPG residues, it was operated to be set up the analysis conditions(the flow rate, etc) of GC-MS and was performed to analyze the component of LPG residues. From the analysis result using GC-MS, it was shown that the component of LPG residues was turned out the plasticizer to be used in the rubber manufacturing process. The inorganic components of LPG residues were analyzed using ICP-OES. At the results of inorganic analysis, it was shown that the Si element was detected, which was presumably derived from defoamers used mainly in the LPG production. Also, the P and Zn element, which are estimated to be components of grease additives used for filling facilities, were also partially detected. No trace of rusting was detected in the LPG residues in the production and distribution stages analyzed in this study. But, as plasticizers and grease additives can affect to the LPG fuel system in vehicles, it will be necessary to use the proper quality of rubber and to expand the use of low boiling grease additives.

The Hazard Assessment of Release and Dispersion of CNG Service Station (CNG 충전소의 누출$\cdot$확산에 대한 위험성 평가)

  • Choi Jong-Woon;Lee Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.53-58
    • /
    • 2000
  • It was carried out consequence analysis(CA) of CNG (compressed natural gas) service station and we compared the results of CA of CNG service station with LPG service station which was installed by high Pressure gas law. The results of CA were that distance of CNG LFL was 1.5 times than the length of LPG LFL. Thermal radiation effect about CNG may not be showed damage of process facilities, but in the case of LPG, it was enough to have an large damage effect on a downtown. The thermal radiation of 37.5 $kw/m^2$ extended 12.6 m. Also, in the case of 12.5 $kw/m^2$ which was able to burn wood, the radiation effect of LPG is 3 times than CNG.

  • PDF

A Study on the Simulation of LPG Refrigeration Cylcle Using Pure Propane Refrigerant (순수한 프로판 냉매를 사용한 액화석유가스 냉동사이클의 모사에 관한 연구)

  • Cho Jung-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.38-42
    • /
    • 2006
  • In this study, a simulation technology for refrigeration cycle which can liquefy and store liquified petroleum gas (LPG) using pure propane as a refrigerant has been introduced. Cooling water as the second cooling medium was used for the liquefaction of propane. Peng-Robinson equation of state was used for the entire refrigeration cycle. A new alpha formulation proposed by Twu et al. was used for the more accurate prediction of vapor pressures of pure propane component and LPG constituents. API method for the accurate estimation of liquid densities of propane and LPG was used instead of using Peng-Robinson equation of state. PRO/II with PROVISION release 7.1, a general purpose chemical process simulator was used for the simulation of the overall refrigeration system. Through this work, we can successfully simulate the real propane refrigeration plant operating at domestic site.

  • PDF