• 제목/요약/키워드: LPG엔진

검색결과 174건 처리시간 0.025초

LPG엔진에서의 윤활유 열화 (The Deterioration of Lubricants in LPG Engine)

  • 류재곤;문우식
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.100-106
    • /
    • 2000
  • Recently, the population of vehicles using LPG as fuel has been increasing due to relatively low fuel price and low tax. Although gasoline engine oils we usually used to lubricate LPG engines, some troubles such as oil thickening and TBN depletion were found in them under severe operating condition. In order to investigate the deterioration mechanism of lubricants in LPG engine, field trials were performed. The results from the field trials showed that the deterioration of oils in LPG engine is different from that in normal gasoline engine. LPG engine oil was deteriorated mainly through oxidation and nitration at high temperature rather than contamination of fuel combustion products.

  • PDF

연소제어인자의 변화에 따른 직접분사식 초희박 LPG엔진의 연소특성 연구 (Study of Combustion Characteristics with Variations of Combustion Parameter in Ultra-Lean LPG Direct Injection Engine)

  • 박윤서;박철웅;오승묵;김태영;최영;이용규
    • 대한기계학회논문집B
    • /
    • 제37권6호
    • /
    • pp.607-614
    • /
    • 2013
  • 오늘날 전 세계의 자동차 회사들은 연비를 향상시키고 배기가스를 저감시키기 위해 다양한 기술을 개발하고 있다. 그 중 직접분사식 초희박 연소기술은 연료제어의 정확도를 향상시켜 연소 효율을 극대화하고 초희박 연소를 통해 연비를 향상 시킬 수 있는 차세대 기술로 평가받고 있다. 따라서 기존 가스엔진에 초희박 직접분사 기술을 적용한 초희박 LPG 직접분사 엔진을 개발하기 위해 $2{\ell}$ 급 MPI 엔진을 베이스 엔진으로 실린더 헤드를 재설계하였다. 재설계된 헤드는 초희박 연소를 구현하기 위해 인젝터와 점화플러그가 헤드 중앙에 장착되는 분무유도방식 연소시스템을 적용하였다. 연료 분사 압력별 연료 분사 시기와 점화 시기의 변경을 통해 연료 소비율과 연소 안정성을 측정하였으며 이를 통해 최적연료 분사시기와 점화시기를 선정하였다.

LPG엔진에서 이온프로브를 이용한 노킹 발생 위치 추정에 관한 연구 (Study on the Estimation of Knock Position in a LPG Engine with Ion-probe Head Gasket)

  • 이정원;최회명;조훈;황승환;민경덕
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.42-48
    • /
    • 2003
  • LPG has been a broad concern of pro-environmental alternative fuel for vehicles. Recently, the new Liquid Phase LPG Injection(LPLI) system extends the limit of power of LPG engine and gives a chance to substitute LPG engine for diesel engine of heavy duty vehicles that are the main resources of air pollution in urban area. Large bore size of heavy duty LPG engine derives a serious knock problem. To find an optimal MBT conditions, it is necessary to know how the flame develops in the combustion chamber and find where the knock positions are. In this study. the ion-probe head gasket was used to estimate the knock position. Inverse operation of the ion-probe signal provides the flame developing characteristics. The further the position is from the spark plug, the later the flame arrives and the more times knock occurs. The main factor that effects knock position is inferred a flor situation of mixed gas in the combustion chamber.

대기온도, 증발기 누출, 엔진오일 및 엔진부하에 따른 LPG 차량의 연비실험에 관한 연구 (Experimental Study on Fuel Consumptions of LPG Vehicle Depending on the Atmospheric Temperature, Vaporizer Gas Leakage, Engine Oil and Engine Loads)

  • 김청균;이일권
    • 한국가스학회지
    • /
    • 제13권5호
    • /
    • pp.1-6
    • /
    • 2009
  • 본 논문에서는 LPG 차량의 연비효과에 미치는 대기온도, 증발기의 가스누출, 엔진오일의 점도, 엔진의 부하조건을 실험적으로 고찰하고자 한다. 연비에 대한 시험결과에 의하면, 엔진의 온도가 상승할수록 연비효과도 함께 점차 높아지고 있다. 대기온도가 $24.2^{\circ}C$일 때의 연비는 $1^{\circ}C$일 때보다 13.6% 정도 높게 나타난 것을 알 수 있다. LP가스 누출이 없는 증발기의 연비는 가스누출이 있는 경우에 비해 5.3%나 좋아지는 것으로 확인되었다. 반면에 엔진오일을 새로 교환한 경우의 연비는 9,500km를 주행한 오일에 비해 1.1% 정도 향상된 것으로 나타났으며, 이것은 대기온도나 증발기의 누설조건에 비해 상대적으로 낮은 영향을 미치는 것으로 관찰되었다. 연비에 더 많은 영향을 미치는 요소는 급제동, 급출발, 급가속과 같은 운전조건으로 판단된다. 연비시험 결과에 의하면, 정상출발은 급출발에 비해 32.3%나 연비가 향상되었고, 급가속은 급출발보다 10.8%나 우수한 연비조건을 보여주고 있다. 또한, 급제동은 급출발보다 18.3%나 우수한 연비상태를 나타내고 있다. 결국 비정상적인 주행조건은 정상적인 운전패턴에 비해 연비가 나쁜 것으로 나타났으므로, 연비를 높이기 위해서는 차량의 주행조건을 정상상태로 유지하는 것이 대단히 중요함을 알 수 있다.

  • PDF

대형엔진용 액상분사식 LPG 연료공급 방식에 대한 기초연구 (1) (Fundamental Study on Liquid Phase LPG Injection System for Heavy-Duty Engine (I))

  • 김창업;오승묵;강건용
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.85-91
    • /
    • 2001
  • LPG has been well known as a clean alternative fuel for vehicles. As a fundamental study on liquid phase LPG injection (hereafter LPLI) system application to heavy-duty engine, engine output and combustion performance were investigated with various operating conditions using a single cylinder engine equipped with the LPLI system. Experimental results revealed that no problems were occurred in application of the LPG fuel to heavy-duty engine, and that volumetric efficiency and engine output, by 10% approximately, were increased with the LPLI system. It was resulted from the decrease of the intake manifold temperature through liquid phase LPG fuel injection. These results provided an advantage in the decrease of the exhaust gas temperature, in the control of knocking phenomena, spark timing and compression ratio. The LPLI engine could normally operated under $\lambda$=1.5 or EGR 30% condition. The optimized swirl ratio for the heavy duty LPG engine was found around R_s$ = 2.0.

  • PDF

분사노즐 근처의 LPG 분무거동 (LPG Spray Behavior Near Injection Nozzle)

  • 조현철;오승우;이기훈;배영주;박권하
    • 한국분무공학회지
    • /
    • 제7권2호
    • /
    • pp.16-21
    • /
    • 2002
  • Liquefied petroleum gas (LPG) has been used as motor fuel due to its low emissions and low cost. This study addresses the analysis of the LPG spray behavior near injection nozzle. The LPG spray photographs are compared with sprays of diesel fuel at the same conditions. The LPG spray photos show that the dispersion characteristic depends very sensuously on the ambient pressure soon after injection. The spray angle is very wide in a low ambient pressure condition until the saturated pressure at this test condition, but the angle value is quickly reduced at the condition over the pressure.

  • PDF

LPG액상분사식(LPLi) 엔진에서 연료와 연료공급계통 고무류 부품사이의 반응성 연구 (Reaction Characteristics of LPG Fuel and Rubber Parts of Fuel Supply System in Liquid Phase LPG Injection (LPLi) System)

  • 김창업;박철웅;강건용
    • 대한기계학회논문집B
    • /
    • 제33권4호
    • /
    • pp.272-277
    • /
    • 2009
  • The liquid phase LPG injection (LPLi) system (the 3rd generation technology) has been considered as one of the most promising fuel supply systems for LPG vehicles. To investigate the reaction characteristics of LPG with rubber parts in LPLi system, various rubbers were tested. The results showed that the amount of residue from the cover rubber of a fuel pump was increased about 10 times after testing. Furthermore, the amount of sulfur and nitrogen species which are considered as main sources of deposit formation in LPLi fuel injectors were also found to be higher than those in original LPG fuel. In addition, these residues made the core parts of LPLi injector such as needle and nozzle, partially worn, which eventually causes leakage in LPLi injectors.

대형엔진용 액상분사식 LPG 연료공급방식에 대한 기초연구 (2) (The Fundamental Study on Liquid Phase LPG Injection System for Heavy-Duty Engine (II))

  • 김창업;오승묵;강건용
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.1-7
    • /
    • 2001
  • Recently, several LPG engines for heavy-duty vehicles have been developed, which can replace some diesel engines that are one of a main source for air pollution in urban area. As a preliminary study on the liquid phase LPG injection (hereafter LPLI) system applicable to a heavy duty LPG engine, the engine output and combustion performance were investigated with various combustion chambers and fuel compositions using a single cylinder engine equipped. Experimental results revealed that ellipse, double ellipse and nebula type combustion chamber made a more advantage in breaking swirl flow into small turbulence scale than bathtub type. Especially, performance of nebula type showed most highest efficiency and engine output under lean mixture conditions. An investigation fur various LPG fuel compositions was also carried out, and revealed that the case with 40% propane and 60% butane shows the lowest efficiency at stoichiometry, however, as the mixture became leaner its efficiency increased and became even higher for 100% propane case.

  • PDF

LPG엔진에서 수소첨가가 배기 성능과 열효율에 미치는 영향 [II] (Effects of Hydrogen-enriched LPG Fuelled Engine on Exhaust Emission and Thermal Efficiency [II])

  • 권태윤;김진호;최경호;정연종
    • 한국수소및신에너지학회논문집
    • /
    • 제13권4호
    • /
    • pp.297-303
    • /
    • 2002
  • The purpose of study is obtaining low-emission and high-efficiency in LPi engine with hydrogen enrichment. The test engine was named variable compression ratio single cylinder engine (VACRE). The fuel supply system provides LPG/hydrogen mixtures based on same heating value. A varied sensors such as crank shaft position sensor (CPS) and hall sensor supplies spark timing data to ignition controller. Displacement of VACRE is $1858.2cm^3$. VACRE was runned 1400rpm with compression ratio 8. Spark timing was set MBT without knocking. Relative air-fuel ratio($\lambda$) of this work was varied between 0,8 and 1.5.

직접분사식 LPG 엔진의 성층화 연소 및 안정성에 관한 연구 (A Study on the Stratified Combustion and Stability of a Direct Injection LPG Engine)

  • 이민호;김기호;하종한
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.106-113
    • /
    • 2016
  • Lean burn engine, classified into port injection and direct injection, is recognized as a promising way to meet better fuel economy. Especially, LPG direct injection engine is becoming increasingly popular due to their potential for improved fuel economy and emissions. Also, LPDi engine has the advantages of higher power output, higher thermal efficiency, higher EGR tolerance due to the operation characteristics of increased volumetric efficiency, compression ratio and ultra-lean combustion scheme. However, LPDi engine has many difficulties to be solved, such as complexity of injection control mode (fuel injection timing, injection rate), fuel injection pressure, spark timing, unburned hydrocarbon and restricted power. This study is investigated to the influence of spark timing, fuel injection position and fuel injection rate on the combustion stability of LPDi engine. Piston shape is constituted the bowl type piston. The characteristics of combustion is analyzed with the variations of spark timing, fuel injection position and fuel injection rate (early injection, late injection) in a LPDi engine.