• Title/Summary/Keyword: LPCC

Search Result 28, Processing Time 0.021 seconds

Quantitative Measure of Speaker Specific Information in Human Voice: From the Perspective of Information Theoretic Approach (정보이론 관점에서 음성 신호의 화자 특징 정보를 정량적으로 측정하는 방법에 관한 연구)

  • Kim Samuel;Seo Jung Tae;Kang Hong Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1E
    • /
    • pp.16-20
    • /
    • 2005
  • A novel scheme to measure the speaker information in speech signal is proposed. We develope the theory of quantitative measurement of the speaker characteristics in the information theoretic point of view, and connect it to the classification error rate. Homomorphic analysis based features, such as mel frequency cepstral coefficient (MFCC), linear prediction cepstral coefficient (LPCC), and linear frequency cepstral coefficient (LFCC) are studied to measure speaker specific information contained in those feature sets by computing mutual information. Theories and experimental results provide us quantitative measure of speaker information in speech signal.

EMG Pattern Recognition based on MFCC-HMM-GMM for Prosthetic Arm Control (의수 제어를 위한 MFCC-HMM-GMM 기반의 근전도(EMG) 신호 패턴 인식)

  • Kim, Jung-Ho;Hong, Joon-Eui;Lee, Dong-Hoon;Choi, Heung-Ho;Kwon, Jang-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.245-246
    • /
    • 2006
  • In this paper, we proposed using MFCC coefficients(Mel-Scaled Cepstral Coefficients) and a simple but efficient classifying method. Many other features: IAV, zero crossing, LPCC, $\ldot$ and their derivatives are also tested and compared with MFCC coefficients in order to find the best combination. GMM and HMM (Discrete and Continuous Hidden Markov Model), are studied as well in the hope that the use of continuous distribution and the temporal evolution of this set of features will improve the quality of emotion recognition.

  • PDF

Speech Feature Selection of Normal and Autistic children using Filter and Wrapper Approach

  • Akhtar, Muhammed Ali;Ali, Syed Abbas;Siddiqui, Maria Andleeb
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.129-132
    • /
    • 2021
  • Two feature selection approaches are analyzed in this study. First Approach used in this paper is Filter Approach which comprises of correlation technique. It provides two reduced feature sets using positive and negative correlation. Secondly Approach used in this paper is the wrapper approach which comprises of Sequential Forward Selection technique. The reduced feature set obtained by positive correlation results comprises of Rate of Acceleration, Intensity and Formant. The reduced feature set obtained by positive correlation results comprises of Rasta PLP, Log energy, Log power and Zero Crossing Rate. Pitch, Rate of Acceleration, Log Power, MFCC, LPCC is the reduced feature set yield as a result of Sequential Forwarding Selection.

The Effect of the Telephone Channel to the Performance of the Speaker Verification System (전화선 채널이 화자확인 시스템의 성능에 미치는 영향)

  • 조태현;김유진;이재영;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.12-20
    • /
    • 1999
  • In this paper, we compared speaker verification performance of the speech data collected in clean environment and in channel environment. For the improvement of the performance of speaker verification gathered in channel, we have studied on the efficient feature parameters in channel environment and on the preprocessing. Speech DB for experiment is consisted of Korean doublet of numbers, considering the text-prompted system. Speech features including LPCC(Linear Predictive Cepstral Coefficient), MFCC(Mel Frequency Cepstral Coefficient), PLP(Perceptually Linear Prediction), LSP(Line Spectrum Pair) are analyzed. Also, the preprocessing of filtering to remove channel noise is studied. To remove or compensate for the channel effect from the extracted features, cepstral weighting, CMS(Cepstral Mean Subtraction), RASTA(RelAtive SpecTrAl) are applied. Also by presenting the speech recognition performance on each features and the processing, we compared speech recognition performance and speaker verification performance. For the evaluation of the applied speech features and processing methods, HTK(HMM Tool Kit) 2.0 is used. Giving different threshold according to male or female speaker, we compare EER(Equal Error Rate) on the clean speech data and channel data. Our simulation results show that, removing low band and high band channel noise by applying band pass filter(150~3800Hz) in preprocessing procedure, and extracting MFCC from the filtered speech, the best speaker verification performance was achieved from the view point of EER measurement.

  • PDF

Speech Recognition Using Noise Robust Features and Spectral Subtraction (잡음에 강한 특징 벡터 및 스펙트럼 차감법을 이용한 음성 인식)

  • Shin, Won-Ho;Yang, Tae-Young;Kim, Weon-Goo;Youn, Dae-Hee;Seo, Young-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.38-43
    • /
    • 1996
  • This paper compares the recognition performances of feature vectors known to be robust to the environmental noise. And, the speech subtraction technique is combined with the noise robust feature to get more performance enhancement. The experiments using SMC(Short time Modified Coherence) analysis, root cepstral analysis, LDA(Linear Discriminant Analysis), PLP(Perceptual Linear Prediction), RASTA(RelAtive SpecTrAl) processing are carried out. An isolated word recognition system is composed using semi-continuous HMM. Noisy environment experiments usign two types of noises:exhibition hall, computer room are carried out at 0, 10, 20dB SNRs. The experimental result shows that SMC and root based mel cepstrum(root_mel cepstrum) show 9.86% and 12.68% recognition enhancement at 10dB in compare to the LPCC(Linear Prediction Cepstral Coefficient). And when combined with spectral subtraction, mel cepstrum and root_mel cepstrum show 16.7% and 8.4% enhanced recognition rate of 94.91% and 94.28% at 10dB.

  • PDF

Speaker Identification Based on Incremental Learning Neural Network

  • Heo, Kwang-Seung;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.76-82
    • /
    • 2005
  • Speech signal has various features of speakers. This feature is extracted from speech signal processing. The speaker is identified by the speaker identification system. In this paper, we propose the speaker identification system that uses the incremental learning based on neural network. Recorded speech signal through the microphone is blocked to the frame of 1024 speech samples. Energy is divided speech signal to voiced signal and unvoiced signal. The extracted 12 orders LPC cpestrum coefficients are used with input data for neural network. The speakers are identified with the speaker identification system using the neural network. The neural network has the structure of MLP which consists of 12 input nodes, 8 hidden nodes, and 4 output nodes. The number of output node means the identified speakers. The first output node is excited to the first speaker. Incremental learning begins when the new speaker is identified. Incremental learning is the learning algorithm that already learned weights are remembered and only the new weights that are created as adding new speaker are trained. It is learning algorithm that overcomes the fault of neural network. The neural network repeats the learning when the new speaker is entered to it. The architecture of neural network is extended with the number of speakers. Therefore, this system can learn without the restricted number of speakers.

A Study on the Channel Normalized Pitch Synchronous Cepstrum for Speaker Recognition (채널에 강인한 화자 인식을 위한 채널 정규화 피치 동기 켑스트럼에 관한 연구)

  • 김유진;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.61-74
    • /
    • 2004
  • In this paper, a contort- and speaker-dependent cepstrum extraction method and a channel normalization method for minimizing the loss of speaker characteristics in the cepstrum were proposed for a robust speaker recognition system over the channel. The proposed extraction method creates a cepstrum based on the pitch synchronous analysis using the inherent pitch of the speaker. Therefore, the cepstrum called the 〃pitch synchronous cepstrum〃 (PSC) represents the impulse response of the vocal tract more accurately in voiced speech. And the PSC can compensate for channel distortion because the pitch is more robust in a channel environment than the spectrum of speech. And the proposed channel normalization method, the 〃formant-broadened pitch synchronous CMS〃 (FBPSCMS), applies the Formant-Broadened CMS to the PSC and improves the accuracy of the intraframe processing. We compared the text-independent closed-set speaker identification on 56 females and 112 males using TIMIT and NTIMIT database, respectively. The results show that pitch synchronous km improves the error reduction rate by up to 7.7% in comparison with conventional short-time cepstrum and the error rates of the FBPSCMS are more stable and lower than those of pole-filtered CMS.

Laryngeal Cancer Screening using Cepstral Parameters (켑스트럼 파라미터를 이용한 후두암 검진)

  • 이원범;전경명;권순복;전계록;김수미;김형순;양병곤;조철우;왕수건
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.14 no.2
    • /
    • pp.110-116
    • /
    • 2003
  • Background and Objectives : Laryngeal cancer discrimination using voice signals is a non-invasive method that can carry out the examination rapidly and simply without giving discomfort to the patients. n appropriate analysis parameters and classifiers are developed, this method can be used effectively in various applications including telemedicine. This study examines voice analysis parameters used for laryngeal disease discrimination to help discriminate laryngeal diseases by voice signal analysis. The study also estimates the laryngeal cancer discrimination activity of the Gaussian mixture model (GMM) classifier based on the statistical modelling of voice analysis parameters. Materials and Methods : The Multi-dimensional voice program (MDVP) parameters, which have been widely used for the analysis of laryngeal cancer voice, sometimes fail to analyze the voice of a laryngeal cancer patient whose cycle is seriously damaged. Accordingly, it is necessary to develop a new method that enables an analysis of high reliability for the voice signals that cannot be analyzed by the MDVP. To conduct the experiments of laryngeal cancer discrimination, the authors used three types of voices collected at the Department of Otorhinorlaryngology, Pusan National University Hospital. 50 normal males voice data, 50 voices of males with benign laryngeal diseases and 105 voices of males laryngeal cancer. In addition, the experiment also included 11 voices data of males with laryngeal cancer that cannot be analyzed by the MDVP, Only monosyllabic vowel /a/ was used as voice data. Since there were only 11 voices of laryngeal cancer patients that cannot be analyzed by the MDVP, those voices were used only for discrimination. This study examined the linear predictive cepstral coefficients (LPCC) and the met-frequency cepstral coefficients (MFCC) that are the two major cepstrum analysis methods in the area of acoustic recognition. Results : The results showed that this met frequency scaling process was effective in acoustic recognition but not useful for laryngeal cancer discrimination. Accordingly, the linear frequency cepstral coefficients (LFCC) that excluded the met frequency scaling from the MFCC was introduced. The LFCC showed more excellent discrimination activity rather than the MFCC in predictability of laryngeal cancer. Conclusion : In conclusion, the parameters applied in this study could discriminate accurately even the terminal laryngeal cancer whose periodicity is disturbed. Also it is thought that future studies on various classification algorithms and parameters representing pathophysiology of vocal cords will make it possible to discriminate benign laryngeal diseases as well, in addition to laryngeal cancer.

  • PDF