• Title/Summary/Keyword: LPC 분석

Search Result 88, Processing Time 0.026 seconds

Comparison of MEL-LPC and LPC-MEL Analysis Method for the Korean Speech Recognition Systems. (한국어 음성 인식 시스템을 위한 MEL-LPC 분석 방법과 LPC-MEL 분석 방법의 비교)

  • 김주곤;김범국;정호열;정현열
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.833-836
    • /
    • 2001
  • 본 논문에서는 한국어 음성인식 시스템의 성능 향상을 위해 청각 주파수 분해능을 가진 MEL-LPC Cepstrum을 음소단위의 HMM(Hidden Markov Model)을 기반으로 하는 인식 시스템에 적용하여 그 결과를 비교 검토하였다. 선형예측(LP) 분석 후에 후처리로서 주파수를 왜곡시킨 LPC-MEL 분석이 계산량이 적고 효과적이라 일반적으로 많이 사용되고 있으나 주파수 분해능은 많이 개선되지 않는다. 따라서 본 논문에서는 주파수 분해능을 개선하기 위해, 원 음성신호로부터 직접적으로 멜주파수로 왜곡시킨 후 선형 예측 분석을 수행하는 MEL-LPC 분석방법을 이용한 음소기반의 화자 독립 음성인식 시스템을 구성하여 기존의 LPC-MEL 분석방법과 비교실험을 통하여 MEL-LPC 분석방법의 유효성을 검토하였다. 실험에 사용한 음성 데이터베이스는 음소 및 단어 인식실험에서는 ETRI 445단어 DB, 연속 숫자음인식 실험에서는 KLE 4연속 숫자음 DB를 사용하였다. 화자 독립 음소인식 실험의 경우, 묵음을 제외한 47개의 유사 음소에 대하여 4상태 3출력의 Left-to-Right 모델을이용하였다. 단어 및 연속 숫자음 인식 실험의 경우, 유한상태 네트워크에 의한 OPDP법을 이용하였다. 화자 독립 음소, 단어 및 4연속 숫자음 인식 실험결과, 기존의 LPC-MEL Cepstrum을 사용한 경우보다 MEL-LPC Cepstum을 사용한 경우가 더 높은 인식률을 나타내어 한국어 음성인식 시스템에서 MEL-LPC 분석방법의 유효성을 확인할 수 있었다.

  • PDF

Quantitative Analysis of Lysophosphatidyl Choline (LPC) in Wheat Starch Lipids by High Performance Liquid Chromatography (고속액체크로마토그래피에 의한 밀전분 지방질에 함유된 리소레시친의 정량)

  • Shin, Myung Gon;Min, Bong Kee;Chang, Pahn Shick
    • Analytical Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.339-343
    • /
    • 1992
  • The content of lysophosphatidyl choline (LPC) in wheat starch lipids from six cultivar representing three classes of wheat was determined by a high performance liquid chromatography using UV-detection (HPLC-UV). The HPLC-UV assay had a sensitivity of LPC concentrations above $5{\mu}g/50{\mu}l$ and required 80 minutes per chromatogram.

  • PDF

Speaker Recognition using LPC cepstrum Coefficients and Neural Network (LPC 켑스트럼 계수와 신경회로망을 사용한 화자인식)

  • Choi, Jae-Seung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2521-2526
    • /
    • 2011
  • This paper proposes a speaker recognition algorithm using a perceptron neural network and LPC (Linear Predictive Coding) cepstrum coefficients. The proposed algorithm first detects the voiced sections at each frame. Then, the LPC cepstrum coefficients which have speaker characteristics are obtained by the linear predictive analysis for the detected voiced sections. To classify the obtained LPC cepstrum coefficients, a neural network is trained using the LPC cepstrum coefficients. In this experiment, the performance of the proposed algorithm was evaluated using the speech recognition rates based on the LPC cepstrum coefficients and the neural network.

Spectrum Representation Based on LPC Cepstral VQ for Low Bit Rate CELP Coder (LPC Cepstral 벡터 양자화에 의한 저 전송율 CELP 음성부호기의 스펙트럼 표기)

  • 정재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.4
    • /
    • pp.761-771
    • /
    • 1994
  • This paper focuses on how spectrum information can be represented efficiently in a very low bit rate CELP speech coder. To achieve the goal, an LPC cepstral coefficients VQ scheme representing the spectrum information in a CELP coder is proposed. To represent the spectrum information using LPC cepstrums, three different cepstral distance measures having different spectral meanings in the frequency domain are considered, and their performances are compared and analyzed. The experimental results show that spectrum information in low bit rate CELP coders can be represented very efficiently using the proposed LPC cepstral vector quantization scheme.

  • PDF

Comparison of Characteristic Vector of Speech for Gender Recognition of Male and Female (남녀 성별인식을 위한 음성 특징벡터의 비교)

  • Jeong, Byeong-Goo;Choi, Jae-Seung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1370-1376
    • /
    • 2012
  • This paper proposes a gender recognition algorithm which classifies a male or female speaker. In this paper, characteristic vectors for the male and female speaker are analyzed, and recognition experiments for the proposed gender recognition by a neural network are performed using these characteristic vectors for the male and female. Input characteristic vectors of the proposed neural network are 10 LPC (Linear Predictive Coding) cepstrum coefficients, 12 LPC cepstrum coefficients, 12 FFT (Fast Fourier Transform) cepstrum coefficients and 1 RMS (Root Mean Square), and 12 LPC cepstrum coefficients and 8 FFT spectrum. The proposed neural network trained by 20-20-2 network are especially used in this experiment, using 12 LPC cepstrum coefficients and 8 FFT spectrum. From the experiment results, the average recognition rates obtained by the gender recognition algorithm is 99.8% for the male speaker and 96.5% for the female speaker.

Fault Diagnosis System of Rotating Machines Using LPC Residual Signal Energy (LPC 잔여신호의 에너지를 이용한 회전기기의 고장진단 시스템)

  • Lee, Sung-Sang;Cho, Sang-Jin;Chong, Ui-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.3
    • /
    • pp.143-147
    • /
    • 2005
  • Monitoring and diagnosis of the operating machines are very important for safety operation and maintenance in the industrial fields. These machines are most rotating machines and the diagnosis of the machines has been researched for long time. We can easily see the faulted signal of the rotating machines from the changes of the signals in frequency. The Linear Predictive Coding(LPC) is introduced for signal analysis in frequency domain. In this paper, we propose fault detection and diagnosis method using the Linear Predictive Coding(LPC) and residual signal energy. We applied our method to the induction motors depending on various status of faulted condition and could obtain good results.

  • PDF

LPC 켑스트럼 및 FFT 스펙트럼에 의한 성별 인식 알고리즘

  • Choe, Jae-Seung;Jeong, Byeong-Gu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.63-65
    • /
    • 2012
  • 본 논문에서는 입력된 음성이 남성화자인지 여성화자인지를 구분하는 FFT 스펙트럼 및 LPC 켑스트럼 입력에 의한 성별인식 알고리즘을 제안한다. 본 논문에서는 특히 남성화자와 여성화자의 특징벡터를 비교 분석하여, 이러한 남녀의 음향학적인 특징벡터의 차이점을 이용하여 신경회로망에 의한 성별 인식에 대한 실험을 수행한다. 특히 12차의 LPC 켑스트럼 및 8차의 저역 FFT 스펙트럼의 특징벡터를 사용한 경우에, 남성화자 및 여성화자에 대해서 양호한 남녀 성별인식률이 구해졌다.

  • PDF

On a Split Model for Analysis Techniques of Wideband Speech Signal (광대역 음성신호의 분할모델 분석기법에 관한 연구)

  • Park, Young-Ho;Ham, Myung-Kyu;You, Kwang-Bock;Bae, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.7
    • /
    • pp.80-84
    • /
    • 1999
  • In this paper, the split model analysis algorithm, which can generate the wideband speech signal from the spectral information of narrowband signal, is developed. The split model analysis algorithm deals with the separation of the 10/sup th/ order LPC model into five cascade-connected 2/sup nd/ order model. The use of the less complex 2/sup nd/ order models allows for the exclusion of the complicated nonlinear relationships between model parameters and all the poles of the LPC model. The relationships between the model parameters and its corresponding analog poles is proved and applied to each 2/sup nd/ order model. The wideband speech signal is obtained by changing only the sampling rate.

  • PDF

Automatic Segmentation Using LPC Smoothed Log Amplitude Spectra (LPC Smoothed Log Amplitude Spectra를 이용한 자동 음성 분할)

  • 김도한;이상운;이기정;홍재근
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.795-798
    • /
    • 2000
  • 연속음 인식과 음성 합성을 위해서는 정밀한 음성학적 모델과 연속 음성에 적용 가능한 언어 모델의 개발이 중요하다. 이를 위해서는 음성 데이터 베이스에 대한 인식 단위, 혹은 합성 단위의 분할이 필요한데, 수동음성 분할은 일관성의 유지가 어렵고 긴 시간이 소요되므로 최근에는 자동 분할 기술이 많이 연구되고 있다. 자동 음성 분할 기법으로는 시간 영역이나 주파수 영역특징 벡터의 천이를 분석하는 방법과 특징 벡터간의 상관도를 구하여 경계를 추출하는 방법이 있다. LPC smoothed log amplitude spectra는 음성의 주파수 영역의 특징을 잘 나타내며, 동일 음소 내의 상관도가 서로 다른 음소의 상관도보다 더 크고, 음소의 경계구간에서 급격한 상관도의 변화를 보인다. 이 특성을 이용하여 이웃 프레임에 대한 상관도의 방향성이 특정조건을 만족하는가를 검사하여 음소의 경계를 구하는 방법을 찾았다. 또한 LPC. 이득 인자만으로 묵음 구간을 검출하는 방법을 제시한다. 이렇게 하면 묵음 구간검출과 음소 경계 검출의 일관성을 향상시키고 수행 시간을 단축시킬 수 있다. 제안한 기법으로 허용 오차 20ms 이내에서 연속음성에 대한 음소 경계 검출 실험을 수행한 결과, 수작업으로 행한 경계 검출 지점의 약 88%를 정확히 검출하였다.

  • PDF

VHDL Implementation of an LPC Analysis Algorithm (LPC 분석 알고리즘의 VHDL 구현)

  • 선우명훈;조위덕
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.1
    • /
    • pp.96-102
    • /
    • 1995
  • This paper presents the VHSIC Hardware Description Language(VHDL) implementation of the Fixed Point Covariance Lattice(FLAT) algorithm for an Linear Predictive Coding(LPC) analysis and its related algorithms, such as the forth order high pass Infinite Impulse Response(IIR) filter, covariance matrix calculation, and Spectral Smoothing Technique(SST) in the Vector Sum Exited Linear Predictive(VSELP) speech coder that has been Selected as the standard speech coder for the North America and Japanese digital cellular. Existing Digital Signal Processor(DSP) chips used in digital cellular phones are derived from general purpose DSP chips, and thus, these DSP chips may not be optimal and effective architectures are to be designed for the above mentioned algorithms. Then we implemented the VHDL code based on the C code, Finally, we verified that VHDL results are the same as C code results for real speech data. The implemented VHDL code can be used for performing logic synthesis and for designing an LPC Application Specific Integrated Circuit(ASOC) chip and DsP chips. We first developed the C language code to investigate the correctness of algorithms and to compare C code results with VHDL code results block by block.

  • PDF