• 제목/요약/키워드: LPC(Linear Predictive Coefficient)

검색결과 18건 처리시간 0.021초

LPC 켑스트럼 계수와 신경회로망을 사용한 화자인식 (Speaker Recognition using LPC cepstrum Coefficients and Neural Network)

  • 최재승
    • 한국정보통신학회논문지
    • /
    • 제15권12호
    • /
    • pp.2521-2526
    • /
    • 2011
  • 본 논문에서는 퍼셉트론 신경회로망과 선형예측부호화 켑스트럼 계수를 사용한 화자인식 알고리즘을 제안한다. 제안하는 화자인식 알고리즘은 입력받은 음성신호에 대해서 유성음 구간을 추출한다. 추출된 유성음 구간에 대하여 선형예측 분석에 의하여 화자의 특성을 가지고 있는 선형예측부호화 켑스트럼 계수를 구한다. 구해진 선형예측부호화 켑스트럼 계수를 분류하기 위하여 이 켑스트럼 계수를 퍼셉트론 신경회로망의 입력으로 사용하여 네트워크의 학습을 수행한다. 본 실험에서는 선형예측부호화 켑스트럼 계수와 신경회로망을 사용하여 본 화자인식 알고리즘이 유효하다는 것을 인식률을 통하여 확인한다.

예측 VQ-Pyramid VQ를 이용한 광대역 음성용 LSF 양자학기 설계 (A LSF Quantizer for the Wideband Speech Using the Predictive VQ-Pyramid VQ)

  • 이강은;이인성;강상원
    • 한국음향학회지
    • /
    • 제23권4호
    • /
    • pp.333-339
    • /
    • 2004
  • 본 논문에서는 벡터 양자화기와 피라미드 벡터 양자화기를 직렬로 결합하여 16차 벡터 소스에 대한 vector quantizer-pyramid vector quantizer (VQ-PVQ)를 개발하였으며, 예측 구조와 세이프티-넷 (safety-net) 개념을 결합시켜 광대역 음성 부호화기용 LPC 계수 양자화 기를 설계하였다. 본 양자화기의 성능은 AMR-WB(ITRT-T G.722.2)의 LPC양자화기 성능과 비교하였는데, 스펙트럼 왜곡 및 메모리 요구량에서 상당한 이득을 얻었다.

선형예측계수와 뇌파의 변화를 이용한 신경회로망 기반 운전자의 졸음 감지 시스템 (Neural-network-based Driver Drowsiness Detection System Using Linear Predictive Coding Coefficients and Electroencephalographic Changes)

  • 정의필;한형섭
    • 융합신호처리학회논문지
    • /
    • 제13권3호
    • /
    • pp.136-141
    • /
    • 2012
  • 운전 중 운전자의 졸음은 교통 사망사고를 일으키는 중요한 요인이며 음주운전보다도 더 위험할 수 도 있다. 이러한 이유로 운전자의 졸음을 판별하고 경고하는 시스템 개발이 최근에 매우 중요한 이슈로 떠올랐다. 그중에서도 졸음과 가장 밀접한 관련이 있는 생체 신호인 뇌파 (Electroencephalogram, EEG)와 안구전도 (Electrooculogram, EOG)를 분석하는 연구가 주류를 이루고 있다. 본 논문에서는 실험 프로토콜에 의거하여 측정된 뇌파를 주파수별로 분석하여 운전자의 상태별 뇌파 데이터베이스를 구축하고 선형예측(Linear Predictive coding, LPC) 계수를 특징벡터로 한 신경회로망 기반 운전자 졸음 감지 시스템을 제안한다. 실험결과로 졸음의 뇌파분석에서 알파파가 감소하며 세타파가 증가하는 추세를 보였으며, LPC 계수가 각성, 졸음 및 수면상태의 특징을 잘 반영하였다. 특히 제안한 시스템은 적은 샘플(250ms)을 가지고도 96.5%라는 높은 분류 결과를 얻어 짧은 순간에 일어날 수 있는 운전 시 돌발 상황을 실시간으로 검출 가능성을 확인하였다.

Group Delay를 이용한 GMM기반의 성별 인식 알고리즘 (GMM-Based Gender Identification Employing Group Delay)

  • 이계환;임우형;김남수;장준혁
    • 한국음향학회지
    • /
    • 제26권6호
    • /
    • pp.243-249
    • /
    • 2007
  • 본 논문은 Group Delay(GD)를 이용한 음성신호 기반의 효과적인 성별인식 시스템을 제안한다. 일반적인 음성 인식과 관련된 시스템에서 사용되는 특징들은 위상에 관한 정보를 제거한 크기만의 정보를 이용하여 구성한다. 본 연구에서는 위상에 관한 정보를 토대로 유도되어 지는 GD의 성별에 따른 특징을 알아보고, 보다 향상된 성별인식을 위해 MFCC(Mel-frequency cepstral coefficient), LPC(linear predictive coding) 계수, 반사계수(reflection coefficient) 그리고 포만트(formant)등과 같은 크기 정보와 GD를 이용한 결합 특징 벡터를 적용하였다. 실험을 통해 성별에 따른 GD의 특징을 확인할 수 있었고, 이를 이용한 제안된 특징 벡터를 사용했을 때 우수한 인식 성능을 얻을 수 있었다.

네트워크 환경에서 서버용 음성 인식을 위한 MFCC 기반 음성 부호화기 설계 (A MFCC-based CELP Speech Coder for Server-based Speech Recognition in Network Environments)

  • 이길호;윤재삼;오유리;김홍국
    • 대한음성학회지:말소리
    • /
    • 제54호
    • /
    • pp.27-43
    • /
    • 2005
  • Existing standard speech coders can provide speech communication of high quality while they degrade the performance of speech recognition systems that use the reconstructed speech by the coders. The main cause of the degradation is that the spectral envelope parameters in speech coding are optimized to speech quality rather than to the performance of speech recognition. For example, mel-frequency cepstral coefficient (MFCC) is generally known to provide better speech recognition performance than linear prediction coefficient (LPC) that is a typical parameter set in speech coding. In this paper, we propose a speech coder using MFCC instead of LPC to improve the performance of a server-based speech recognition system in network environments. However, the main drawback of using MFCC is to develop the efficient MFCC quantization with a low-bit rate. First, we explore the interframe correlation of MFCCs, which results in the predictive quantization of MFCC. Second, a safety-net scheme is proposed to make the MFCC-based speech coder robust to channel error. As a result, we propose a 8.7 kbps MFCC-based CELP coder. It is shown from a PESQ test that the proposed speech coder has a comparable speech quality to 8 kbps G.729 while it is shown that the performance of speech recognition using the proposed speech coder is better than that using G.729.

  • PDF

TMS DSP 칩을 이용한 음성 특징 벡터 추출기 설계 (A Design of Speech Feature Vector Extractor using TMS320C31 DSP Chip)

  • 예병대;이광명;성광수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2212-2215
    • /
    • 2003
  • In this paper, we proposed speech feature vector extractor for embedded system using TMS 320C31 DSP chip. For this extractor, we used algorithm using cepstrum coefficient based on LPC(Linear Predictive Coding) that is reliable algorithm to be is widely used for speech recognition. This system extract the speech feature vector in real time, so is used the mobile system, such as cellular phones, PDA, electronic note, and so on, implemented speech recognition.

  • PDF

음소 유사율 오류 보정을 이용한 어휘 인식 후처리 시스템 (Vocabulary Recognition Post-Processing System using Phoneme Similarity Error Correction)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권7호
    • /
    • pp.83-90
    • /
    • 2010
  • 어휘 인식 시스템에서 인식률 저하의 요인으로는 유사한 음소 인식과 부정확한 어휘 제공으로 인해 오인식 오류가 존재한다. 부정확한 어휘의 입력으로 특징을 추출하여 인식할 경우 오인식의 결과가 나타나거나 유사한 음소로 인식되며 특징 추출이 제대로 이루어지지 않으면 음소 인식 시 유사한 음소로 인식하게 된다. 따라서 본 논문에서는 음소가 갖는 특징을 기반으로 음소 유사율을 이용한 어휘 인식 후처리에서의 오류 보정 후처리 시스템을 제안하였다. 음소 유사율은 모노폰으로 훈련시킨 훈련 데이터를 각각의 음소에 MFCC와 LPC 특징 추출 방법을 이용하여 구하였다. 유사한 음소는 정확한 음소로 인식할 수 있도록 유도하여 부정확한 어휘 제공으로 인하여 오인식되는 오류를 최소화하였다. 음소 유사율과 신뢰도를 이용하여 오류 보정율을 구하였으며, 어휘 인식 과정에서 오류로 판명된 어휘에 대하여 오류 보정을 수행하였다. 에러패턴 학습을 이용한 시스템과 의미기반을 이용한 시스템에 비해 시스템 성능 평가 결과 MFCC와 LPC는 각각 7.5%와 5.3%의 인식 향상률을 보였다.

음소경계검출과 신경망을 이용한 음소인식 연구 (Phoneme-Boundary-Detection and Phoneme Recognition Research using Neural Network)

  • 임유두;강민구;최영호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 추계종합학술대회
    • /
    • pp.224-229
    • /
    • 1999
  • 음성 인식 연구는 유사음소 단위의 인식시스템을 구축하는 방향과 단어 단위의 인식시스템에서의 효율을 최대화하는 방향으로 이루어지고 있다. 이중 유용한 유사음소 단위의 인식시스템 구현을 위해서는 음소의 경계 검출 문제와 검출된 음소에 대한 인식률 향상 문제가 해결되어야 한다. 기존의 LPC(Linear Predictive Coefficient) 방법들은 기준 음소데이터의 LPC와 입력 음성프레임의 LPC 사이의 거리를 Itakura-Saito 방법으로 구하여 음소의 경계를 검출하였으며, 근래에는 MFCC(Mel-Frequency-Cepstrum Coefficient)를 이용하여 스펙트럼의 천이부분을 음소의 경계로 검출하는 방법들이 제안되어왔으나 이러한 방법들은 공통적으로 적응성이 미비하다는 단점이 있다. 본 논문에서는 이러한 단점을 극복하기 위해 음소경계검출을 위해서는 auto-correlation을 이용하고 음소인식을 위해서는 적응성이 뛰어난 다층 Feed-Forward 신경망을 사용하는 새로운 인식시스템을 제안하였다 제안하는 시스템은 기존의 방법들보다 적응성이 뛰어나고 특징추출부분과 인식 부분의 알고리듬이 독립적이라는 장점을 가지며 프레임단위의 음소인식시스템의 구현 가능성을 확인해 주었다.

  • PDF

LTJ 적응필터의 실용적 구현과 적응반향제거기에 대한 적용 (A Practical Implementation of the LTJ Adaptive Filter and Its Application to the Adaptive Echo Canceller)

  • 유재하
    • 음성과학
    • /
    • 제11권2호
    • /
    • pp.227-235
    • /
    • 2004
  • In this paper, we proposed a new practical implementation method of the lattice transversal joint (LTJ) adaptive filter using speech codec's information. And it was applied to the adaptive echo cancellation problem to verify the efficiency of the proposed method. Realtime implementation of the LTJ adaptive filter is very difficult due to high computational complexity for the filter coefficients compensation. However, in case of using speech codec, complexity can be reduced since linear predictive coding (LPC) coefficients are updated each frame or sub-frame instead of every sample. Furthermore, LPC coefficients can be acquired from speech decoder and transformed to the reflection coefficients. Therefore, the computational complexity for updates of the reflection coefficients can be reduced. The effectiveness of the proposed LTJ adaptive filter was verified by the experiments about convergence and tracking performance of the adaptive echo canceller.

  • PDF

초음파 도플러 신호를 이용한 음성 합성 (Speech synthesis using acoustic Doppler signal)

  • 이기승
    • 한국음향학회지
    • /
    • 제35권2호
    • /
    • pp.134-142
    • /
    • 2016
  • 본 논문에서는 40 kHz 초음파 신호를 입 주변에 쏘고, 되돌아오는 초음파 신호를 이용해 음성신호를 합성하는 방법을 소개하고 성능을 평가하였다. 발성하고 있는 입주변에 초음파를 방사하게 되면, 입술, 턱, 뺨 등의 움직임으로 인한 변위로 도플러 현상이 발생하고, 이에 따라 반사 신호에는 본래의 주파수 성분과는 다른 도플러 주파수가 관찰되는데, 본 논문에서는 이러한 도플러 주파수를 이용하여 음성 파라메터를 추정하도록 하였다. 음성합성에 앞서서 초음파 도플러 신호와 음성 신호 간의 상관관계를 각 주파수 별로 분석하였으며, 이로부터 초음파 도플러 신호를 이용한 음성 신호의 합성 가능성을 살펴보았다. 변환에는 초음파 도플러의 정적, 동적 특성을 함께 반영한 특징 변수를 사용하였으며 결합-혼합 가우시안 기법을 이용하여 음성 파라메터로 변환하였다. 5명의 피 실험자를 이용한 음성 합성 실험에서 필터뱅크 에너지 값을 초음파신호의 특징변수로, LPC(Linear Predictive Coefficient) 켑스트럼 계수를 음성 변수로 사용하는 경우 가장 우수한 변환 성능을 나타내었다. 음성신호에서 추출한 여기신호를 이용하여 합성음을 생성하고, 이를 청취하였을 때 72.2 %의 평균 인식율이 얻어짐을 확인할 수 있었다.