• 제목/요약/키워드: LPB

검색결과 31건 처리시간 0.03초

Characteristics of LPB Having Gold Anode Fabricated by Sputtering Methode. (스퍼트링법에 의해 부극을 금으로 코팅시킨 LPB의 특성 연구)

  • 정재국;남효덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.1043-1046
    • /
    • 2001
  • In this study, characteristics of LPB having gold anode fabricated by sputtering methode were analyzed. As results, The 1st efficiency and the impedance characteristics of LPB decreased with increased gold coated on anode and current collector. But the rate characteristics and charge-discharge cycling characteristics increased with increased gold coated on anode and current collector. During 2C discharge of the rate characteristics test, the rate characteristics of LPB without gold coated and the rate characteristics of LPB with gold coated in twice were 159mAh/g and 189mAh/g, respectively. The discharge capacity was gradually degreased with the discharge cycling to about 20th cycles. But LPB with gold coated in twice was stabilized than LPB without gold coated.

  • PDF

Development of BMS applying to LPB Pack in Bimodal Tram (바이모달트램용 LPB팩에 적용될 Battery Management System 개발)

  • Lee, Kang-Won;Chang, Se-Ky;Nam, Jong-Ha;Kang, Duk-Ha;Bae, Jong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.477-477
    • /
    • 2009
  • Bimodal Tram developed by KRRI is driven by a series Hybrid propulsion system which has both the CNG engine, generator and LPB(Lithium Polymer Battery) pack. It has three driving modes; Hybrid mode, Engine mode and Battery mode. Even in case of Battery mode, LPB pack to get enough power to drive the vehicle only by itself onsists of 168 LPB cells(80Ah per lcell), 650V. It is important thing to manage LPB pack in a right way, which will extend the lifetime of LPB cells and operate in the hybrid mode effectively. This paper has shown the development of battery management system(12 BMS, 1 BMS per 14cells) to manage LPB pack which is connected with CAN(Controller Area Network) each other and measure the voltage, current, temperature and also control the cooling fan inside of LPB pack. Using the measured data, BMS can show the SOC(State of Charge), SOH(State of Health) and other status of LPB pack including of the cell balancing.

  • PDF

Development and Application of LPB Management System for Bimodal Tram (바이모달트램용 LPB Management System 개발 및 적용)

  • Lee, Kang-Won;Mok, Jai-Kyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • 제64권4호
    • /
    • pp.231-235
    • /
    • 2015
  • Bimodal Tram developed by KRRI is driven by a series Hybrid propulsion system which has both the CNG engine, generator and LPB(Lithium Polymer Battery) pack. It has three driving modes; Hybrid mode, Engine mode and Battery mode. Even in case of Battery mode, LPB pack to get enough power to drive the vehicle only by itself onsists of 168 LPB cells(80Ah per lcell), 650V. It is important thing to manage LPB pack in a right way, which will extend the lifetime of LPB cells and operate in the hybrid mode effectively. This paper has shown the development of battery management system(12 BMS, 1 BMS per 14cells) to manage LPB pack which is connected with CAN(Controller Area Network) each other and measure the voltage, current, temperature and also control the cooling fan inside of LPB pack. Using the measured data, BMS can show the SOC(State of Charge), SOH(State of Health) and other status of LPB pack including of the cell balancing.

Driving Characteristics Analysis with Temperatures of Lithium Polymer Battery Pack for Bimodal Tram (바이모달트램에 탑재된 리튬폴리머배터리팩의 온도에 따른 운전특성분석)

  • Lee, Kang-Won;Jang, Se-Ky
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.292-292
    • /
    • 2010
  • Bimodal Tram is driven by both engine and Lithium Polymer battery pack which consists with 168 cells of LPB(80Ah, 650Vdc). LPB pack is very frequently charged and discharged in driving. Temperature inside of LPB pack makes an great effect on both charging and discharging capacity which seem to be related with LPB internal resistance. LPB internal resistance is increasing or little decreasing with the decreased temperature under 10 - $20^{\circ}C$ and the increased temperature over $30^{\circ}C$ which is similar to the temperature characteristics of single LPB cell. This paper has analyzed the driving characteristics of LPB pack for bimodal tram is running with either battery mode or hybrid mode.

  • PDF

Performance Evaluation for Application of Large Capacity LPB Pack Equipped to Series Hybrid Articulated Vehicle (직렬형 하이브리드 굴절차량용 대용량 LPB 팩의 적용 및 성능 평가)

  • Lee, Kang-Won;Mok, Jai-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제25권11호
    • /
    • pp.930-937
    • /
    • 2012
  • Newly developed Series hybrid low-floor articulated vehicle which can meet both road and railway running conditions. It has the rated driving speed of 80 km/h and three driving modes with hybrid(engine+battery) driving mode, engine driving mode, battery driving mode. The battery driving mode requires the several 10 km running without additional charging operation. The vehicle has been equipped with LPB (lithium polymer battery) pack for the series hybrid propulsion system. LPB pack consists of 168 cells (3.7 V in a cell, 80 Ah) in series, DC Circuit breaker, mechanical rack, BMS (battery management system). This paper has shown the design process of LPB pack and application to the vehicle. Driving results in the road was successful to be satisfied with the requirement of the series hybrid vehicle.

Effects of the composition and the pressing rate of electrode on the internal resistance and the battery characteristic (전극 조성 및 압착율에 의한 내부저항과 전지특성)

  • 정재국;진봉수;문성인;윤문수;남효덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.421-424
    • /
    • 2000
  • We have examined the impedance characteristics and the rate characteristics of LPB. As results, the impedance of LPB decreased with increased pressing rate of electrodes, adding amounts of PVdF and VGCF. And the rate characteristics of LPB increased with the a increase of pressure-rate, PVdF and VGCF contents. The rate characteristics of LPB was improved by pressing of electrode and adding of VGCF content. And specific capacity of anode was increased with adding amounts of PVdF. Higher pressing rate of electrodes, higher adding amounts of PVdF and VGCF was necessitated good rate characteristics for lithium polymer battery.

  • PDF

Systematic studies on the properties of poly(lactic acid) (PLA)/liquid polybutadiene rubber (LPB) reactive blends

  • Lim, Sung-Wook;Choi, Myeon-Cheon;Jeong, Jae-Hoon;Park, Eun-Young;Ha, Chang-Sik
    • Advances in materials Research
    • /
    • 제7권2호
    • /
    • pp.149-162
    • /
    • 2018
  • Following our previous work, we have conducted further systematic studies to investigate the effects of reactive blending on the thermal and mechanical properties of blends of poly(lactic acid) (PLA) and a liquid rubber, polybutadiene (LPB). The toughened PLAs were prepared by melt-blending the PLA with various contents (0-9 wt.%) of the LPB in the absence or presence of dicumyl peroxide (DCP), a radical initiator. It was found that the rubber domains were homogeneously dispersed at the nanoscale in the PLA matrix up to 9 wt.% of LPB thanks to the reactive blending in the presence of DCP. Owing to the compatibilization of PLA with LPB through reactive blending, the elongation and toughness of PLA was enhanced, while the hydrolytic degradation of PLA was reduced.

바이모달 트램용 리튬폴리머전지팩에 대한 열유동해석

  • Lee, Gang-Won;Jang, Se-Gi;Jo, Se-Hyeon;Bae, Jong-Min;Gang, Hwan-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.289-289
    • /
    • 2009
  • The series hybrid propulsion system in bimodal tram consists of CNG engine, generator, inverter, motor and battery as main components. Among them, battery is very important thing to make a hybrid bimodal tram more efficient in driving. Battery pack is composed of 168 LPB(lithium polymer battery) cells, 650Vdc-300A. LPB should be treated with a good consideration in both temperature and overvoltage. This paper had analyzed and investigated the thermal flow and distribution of LPB module(l4 LPB cells) and Pack in simulated environments by commercial thermal analysis tool.

  • PDF

Laser Power Beaming Based Wireless Power Transmission System for Multiple Charging of Long-distance Located Electric Vehicle (원거리 전기 자동차의 다중 충전을 위한 레이저 파워 빔 기반의 무선 전력 전송 시스템)

  • Eom, Jeongsook;Kim, Gunzung;Choi, Jeonghee;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • 제11권6호
    • /
    • pp.379-392
    • /
    • 2016
  • This paper presents the design and simulation of a laser power beaming (LPB) system for an electric vehicle that establishes an optimal power transmission path based on the received signal strength. The LPB system is possible to transfer power from multiple transmitters to a single receiver according to the characteristics of the laser and the solar panel. When the laser beams of multiple transmitters aim at a solar panel at the same time, the received power is the sum of all energy at a solar panel. Our proposed LPB system consists of multiple transmitters and multiple receivers. The transmitter sends its power characteristics as optically coded pulses with a class 1 laser beam and powers as a high-intensity laser beam. By using the attenuated power level, the receiver can estimate the maximum receivable powers from the transmitters and select optimal transmitters. Throughout the simulation, we verified the possibility that different LPB receivers were achieved their required power by the optimal allocation of the transmitter among the various transmitters.