• Title/Summary/Keyword: LOTIC

Search Result 68, Processing Time 0.028 seconds

Structural And Functional Changes In Planktonic Algal Communities Of The Han River (한강하류에 있어서 부유성 조류군집의 구조 및 기능변화에 관한 연구)

  • Shim, Jae Hyung;Choi, Joong Ki
    • 한국해양학회지
    • /
    • v.13 no.2
    • /
    • pp.31-41
    • /
    • 1978
  • The planktonic algal communities of the Han River with a particular emphasis on water pollution was studied over a twelve month of period. Results of observing many algal communities from 7 stations of the Han River have shown that these communities are generally composed of many species, most of which have relatively small populations with a few exceptional dominant species. The distribution of the total standing crop of phytoplankton in the studid area is characteristic, summer in the polluted zone. Diversity indices of all samples were computed and have shown that the H values of 7 stations are relatively low. However, a detailed examination of these H values reveals that the seasonal fluctuations of the species diversity remarkably coincide with those fo phytoplankton standing crop.No reduction in the species diversity at stations 4, 5, 6, and 7 where the water is heavily polluted indicates that a great number of species capable of invading stations, 4, 5, and 6 from the various tributaries, and the station 7 from the contaminated with sea water are probably more important in the functional changes of the communities than the size of sampling area. It is evident that the diversity index in a lotic environment does not indicate water quality as far as phytoplankton communities are concerned.

  • PDF

Development, Structure, and Diversity of Microbial Lotic Calcareous Mat Communities

  • Bang, Sookie S.;Anderson, Cynthia M.;Bergmann, David J.;Sieverding, Heidi L.;Flanegan, Amy L.;Braaten, Amanda S.;Masteller, Amanda R.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.118-118
    • /
    • 2008
  • The phylogenetic diversity of microbial communities in calcareous mats from Spearfish Creek, a freshwater stream located in the Black Hills of South Dakota, was examined using PCR-based 16S rDNA sequence analysis. In this study, two types of calcareous mats were compared: mature mats formed on the natural substrate of rock surfaces and developing mats on an artificial substrate of glass slides. Among 63 unique isolates from a clone library of 16S rRNA genes from mature mat samples, there were 8 phyla of Bacteria represented. The predominant phylum was Proteobacteria (48%), with the $\beta$ subclass being the largest group. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes from slide samples collected at intervals for four months showed considerable diversity of the microbial community from the earliest stages of community development. Amplicons isolated from DGGE gels and sequenced indicated that community succession has occurred without increasing microbial diversity. However, light microscopic analysis revealed a significant increase in microbial cell density throughout the community development. Scanning electron microscopy of mat samples provides evidence that diatoms are also important members of calcareous mat communities.

  • PDF

A study on comparison and analysis of chlorophyll sensor with aceton extraction for chlorophyll measurement in the Nakdong River (낙동강에서 클로로필(Chlorophyll) 측정을 위한 클로로필 센서와 아세톤 추출법의 비교분석에 관한 연구)

  • Park, Joo-Hyun;Lee, Kyoung-Jin;Cho, Jae-Won;Jeon, Sook-Lye;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.3
    • /
    • pp.325-335
    • /
    • 2015
  • Concerns about water quality in the Nakdong River have been raised because the Nakdong River will change from a lotic environment to a lentic environmental due to the installation of eight weirs to be constructed as part of the Four Major Rivers Restoration Project. The rapid urbanization and industrialization of the middle and the lower reaches of Nakdong River causes the indiscreet discharge of uncleanly living sewage and industrial wastewater. And the water quality of lower reaches of Nakdong River is getting seriously worse. Owing to the water shortage of Nakdong River and the closing of reaches because of the estuary dyke in the dry season, the velocity of a moving fluid is almost accumulated under 0.03m/sec. Then a pollutant is piled up on the bottom of the river. Polluted sediment is formed and nutrition level of water is increased more and more. The eutrophication state propagated to dark brown or green from eutrophication often comes out. Therefore in this study, we measured Chl. a of chlorophyll sensor (YSI6600V2) and aceton extraction through field observation in the Nakdong River and Samrangjin. And we evaluated the reliability of chlorophyll sensor. In correlation analysis between chlorophyll sensor and aceton extraction, it shows high relation in general. And it also shows high relation among the chlorophyll sensor and aceton extraction of the dominant diatom (Skeletonema costatum), Dinophyta (Prorocentrum minimum) in the Nakdong River estuary by laboratory analysis results.

Water Quality Variation Dynamics between Artificial Reservoir and the Effected Downstream Watershed: the Case Study (인공댐과 그 영향을 받는 하류하천의 수질변동 역동성 : 사례 연구)

  • Han, Jung-Ho;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.382-394
    • /
    • 2008
  • The objective of this study was to analyze temporal trends of water chemistry and spatial heterogeneity between the dam site (Daecheong Reservoir, S1) and the downstream (S2$\sim$S4) using water quality dataset (obtained from the Ministry of Environment, Korea) during 2000$\sim$2007. Water quality, based on eight physical and chemical parameters, varied largely depending on the years, sampling sites, and the discharge volume. Conductivity and nutrients (TN and TP) showed a decreasing trend in the downstream (S4) rather than the dam site during the monsoon. Spatial variation increased toward downstream (S4) from Daecheong Reservoir (S1). Also, BOD and COD increased toward downstream. Because of input of nutrient and pollutant nearby S1, lentic ecosystem in monsoon, BOD and COD were slightly increased. whereas relatively decreased in S4, lotic ecosystem in monsoon, by dilution effect of nutrient and pollutant by discharge from upper dam, S1. Spatial variation of SS increased toward downstream (S4) by the side of Daecheong Reservoir (S1). Based on the dataset, efficient water quality management in the point source tributary streams is required for better water quality of downstream. Monthly characteristics of DO showed the lowest value in the monsoon that tend to increase water temperature. DO was lowest in October at S1 because turbid water, input to the Daecheong Reservoir in the monsoon affect to the postmonsoon period. In contrast, water temperature increased toward summer monsoon, in spite of some differences showed between S1 and S4 environment. Overall, the characteristics of water quality in downstream region have close correlation with discharge amount of Daecheong Reservoir. Thus, those characteristics can explain that discharge control of upper dam mainly affect to the water quality variation in downstream reach.

Development of the Filterable Water Sampler System for eDNA Filtering and Performance Evaluation of the System through eDNA Monitoring at Catchment Conduit Intake-Reservoir (eDNA 포집용 채수 필터시스템 개발과 집수매거 취수지 내에서의 성능평가)

  • Kwak, Tae-Soo;Kim, Won-Seok;Lee, Sun Ho;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.272-279
    • /
    • 2021
  • A pump-type eDNA filtering system that can control voltage and hydraulic pressure respectively has been developed, and applied a filter case that can filter out without damaging the filter. The filtering performance of the developed system was evaluated by comparing the eDNA concentration with the conventional vacuum-pressured filtering method at the catchment conduit intake reservoir. The developed system was divided into a voltage control (manual pump system) method and a pressure control (automatic pump system) method, and the pressure was measured during filtering and the pressure change of each system was compared. The voltage control method started with 65 [KPa] at the beginning of the filtering, and as the filtering time elapsed, the amount of filtrate accumulated in the filter increased, so the pressure gradually increased. As a result of controlling the pressure control method to maintain a constant pressure according to the designed algorithm, there was a difference in the width of the hydraulic pressure fluctuation during the filtering process according to the feedback time of the hydraulic pressure sensor, and it was confirmed that the pressure was converged to the target pressure. The filtering performance of the developed system was confirmed by measuring the eDNA concentration and comparing the voltage control method and the hydraulic control method with the control group. The voltage control method obtained similar results to the control group, but the hydraulic control method showed lower results than the control group. It is considered that the low eDNA concentration in the hydraulic control method is due to the large pressure deviation during filtering and maintaining a constant pressure during the filtering process. Therefore, rather than maintaining a constant pressure during filtering, it was confirmed that a voltage control method in which the pressure is gradually increased as the filtrate increases with the lapse of filtering time is suitable for collecting eDNA. As a result of comparing the average concentration of eDNA in lentic zone and lotic zone as a control group, it was found to be 96.2 [ng µL-1] and 88.4 [ng µL-1l], respectively. The result of comparing the average concentration of eDNA by the pump method was also high in the lentic zone sample as 90.7 [ng µL-1] and 74.8 [ng µL-1] in the lentic zone and the lotic zone, respectively. The high eDNA concentration in the lentic zone is thought to be due to the influence of microorganisms including the remaining eDNA.

Spatial Analysis of Ecological Characteristics of Zacco platypus Population in Lake Hoengseong Region (횡성호 일대에 분포하는 피라미(Zacco platypus) 개체군의 생태적 특성 분석)

  • Lee, Hwang-Goo;Shin, Hyun-Seon;Kim, Sung-Won;Choi, Jun-Kil
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.3
    • /
    • pp.374-381
    • /
    • 2012
  • In this study, ecological characteristics of Zacco platypus population in Lake Hoengseong region, including the up-and downstream in Lake, were investigated from April to November, 2010. The results compared with regional dynamics of Z. platypus population showed a dominant population among the other fish population, and also upstream has relatively high as 1,707 (78.70%) individuals than those of other sites. The regression coefficient (b) in relation to length-weight on Z. platypus population were 3.28 which appeared relatively a stabilized habitat condition in Lake Hoengseong region and 3.28 at the upstream and 3.10 in Lake Hoengseong and 3.09 at the downstream. Condition factor on Z. platypus population in Lake Hoengseong region showed stabilized population as 0.003 value, and especially the condition factors at the upstream were relatively higher than those at the downstream and Lake Hoengseong, indicate that Z. platypus population at the upstream displayed to be maintained as the most good condition in relation to trophic states. As a results of compared with body size on Z. platypus population, was investgated as highly distribute between 30~50mm and 70~90mm at upstream; 60~80mm in Lake Heongseong; 70~100mm at downstream, respectively. As a results, Z. platypus population at the upstream among Lake Hoengseong region displayed the most stabilized growth condition, and Z. platypus population were inhabitable in lotic and lentic environments based on good habitat condition.

Improvement of Functional Assessment for Riverine Wetlands using HGM Approach (HGM 적용을 통한 하도습지의 기능평가 제고 방안 연구)

  • Yeum, Junghun;Kim, Taesung
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.378-385
    • /
    • 2016
  • This study aims to suggest the framework of functional assessment on lotic area based on HGM(Hydrogeomorphic) approach targeting Wetland Protected Areas which are in the type of river channel, and to set up the fundamental data as a reference wetland. A total of 10 factors in terms of hydrology, biogeochemistry, plant habitat and animal habitat was analyzed based on the original approach of HGM and each Functional Capacity Index(FCI) of those factors was calculated. As the result of the modified FCI analysis, Damyang riverine wetland which is with artificial river bank had high values in the variables of area ratio of actual vegetation in the foreland, the number of plant per area and the area ratio of Salix spp., and those values were highly reflected on the factors of Nutrient Cycling(947,668.00), Species Richness and Maintain Characteristic Plant Communites(6.39) and Maintain Spatial Structure of Habitat(11.00). The Hanbando wetland which is keeping the natural bank had higher values in the variables of structural scale and species diversity, and the those values were highly reflected on the factors of Energy Dissipation(17,805.16), Subsurface Storage of Water(0.54), Removal of Imported Elements and Compounds(103,052.73), Maintain Characteristic Detrital Biomass(2.31), Maintenance of Interspersion and Connectivity (6.50), Species Diversity of Benthic macro-invertebrates(1.60) and Species Diversity of Vertebrate & Species Number of Other Animals(2.52/ 151.50), compared to the Damyang Riverine Wetland.

A Development of Multi-metric Approach for Ecological Health Assessments in Lentic Ecosystems (정수 생태계 건강성 평가를 위한 다변수 메트릭 모델 개발)

  • An, Kwang-Guk;Han, Jung-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.72-81
    • /
    • 2007
  • The purpose of this study was to develop a multi-metric Lentic Ecosystem Health Assessment (LEHA) model and apply model to dataset sampled from Daechung Reservoir in September 2005. The metrics were composed of 11 parameters such as physical, chemical and biological variables. The metric attributes of $M_1{\sim}M_8$ followed after the model of biological integrity using fish assemblages that previously adapted in lotic ecosystems, while the metrics of $M_9{\sim}M_{11}$ were added on the basis of literature. The metric of $M_9$ reflected habitat conditions in the littoral zone and the metric of $M_{10}$ reflected chemical conditions of the reservoir. For the application of regression analysis of long-transformed conductivity [$Log_{10}$(Cond)] against $COD_{Mn}$, based on 150 sampling sites at Korean reservoirs, showed that the variation of conductivity was explained 77.4% [$COD_{Mn}=4.42{\times}Log_{10}(Cond)-5.43;\;R^2=0.774$, p<0.01, n=150] by the variation of $COD_{Mn}$. The metric of $M_{11}$ was based on Tropic State Index (TSI), based on chlorophyll-${\alpha}$ concentrations (Chl-${\alpha}$). Analysis of TSI $(Chl-{\alpha})$ showed that above 50 was estimated "1", $40{\sim}50$ was estimated "3" and below 40% was estimated '5'. Overall, velues of LEHA in the reservoir averaged 30.5, indicating a "fair${\sim}$poor condition", which is judged by the criteria of U.S. EPA (1993). More studies such as metric numbers and attributes should be done for the application of the model.

Influences of Freshwater Bivalve Unio douglasiae on the Water Quality and Periphyton Community in Artificial Eutrophic Streams (담수 이매패 말조개가 부영양 하천의 수질 및 부착조류 군집에 미치는 영향)

  • Park, Chae-Hong;Lee, Ju-Hwan;Hwang, Soon-Jin;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.437-450
    • /
    • 2010
  • Ecological influences of indigenous freshwater bivalve Unio douglasiae on the water quality and epilithic diatom community was examined with artificial stream (AST), which constructed in a laboratory daily receiving the eutrophic lake water. For the colonization of new periphyton community, forty commercial slide glasses were deposited as a substrate into the lowest part of each AST. Prior to 1 week, the AST was operated to induce the freely-colonization of the algal community in the absence of mussels. After the mussels was introduced at 435 indiv. $m^{-2}$ between step 1 and step 5, the passed water and substrates were daily collected to analysis the change of water quality and lotic and lentic algae abundance for 10 days. Compared to the control, turbidity (60.0% of control), suspended solids (62.5%), and chlorophyll-$\alpha$ (72.2%) in mussel-passed waters were decreased significantly, while a strong increase of ammonia (up to 800% of control) was companied with the decrease of dissolved oxygen (19.5% of control) and total phosphorus (23.9%), respectively. On average, the concentrations of suspended solids (67.0% of control) and chlorophyll-$\alpha$ (89.4%) in mussel-treated substrates were remarkably increased, however algal abundance in its water simultaneously decreased. These results indicate that incidentally or purposely mussel introductions can decrease organic matter of the stream and increase transparency of stream water, however, mussel-mediated nutrient and pseudofeces release may stimulate the adverse growth of periphyton or phytoplankton community in the lower stream or reservoir.

Comparison of Algal Growth Potentials in the Large Reservoirs and River Mainstream of Naktong River Watershed (낙동강 수계 대형 인공호 및 하천본류의 조류성장 잠재력 비교)

  • You, Kyung-A;Shin, Jae-Ki;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.138-144
    • /
    • 2006
  • Algal growth potential test (AGPT) has been used as a tool for assessing biological productivity potential in the aquatic ecosystems. This study was conducted to compare the productivity potentials of large reservoirs (Lakes Andong, Hapchon and Jinyang, and Naktong estuarine dam) and river sites (Sangju, Koryung, and Samlangjin) located in the Naktong River watershed. AGPT was conducted in both non-monsoon and mosoon season (February, April, July and September) of 2003, using Microcystis aeruginosa as a test alga. The AGPs in the reservoirs were relatively much lower than those of river sites. The river AGPs increased towards upstream close to the influent streams, while it generally decreased towards downstream. Immediately after the abrupt increase in influent discharge in summer, the AGP became similar between midstream and downstream sites. The water quality of river and reservoirs deteriorated during the drought period in accordance with AGP: it was the highest during this period. The AGPs showed the closest correlation with the P concentration, leading to the conclusion that bioavailable P is highly influential to the algal growth in both lentic and lotic ecosystems in the Naktong River watershed. Based on the AGPs, the water quality of tested sites was likely eutrophic. Our results suggest that AGPT be a useful tool in evaluating the productivity potential and trophic state of the water body as well as determining the nutrients that limit the growth of algae.