• Title/Summary/Keyword: LOQ

Search Result 468, Processing Time 0.032 seconds

Development and Validation of Analytical Method and Antioxidant Effect for Berberine and Palmatine in P.amurense (황백의 지표성분 berberine과 palmatine의 분석법 개발과 검증 및 항산화 효능 평가)

  • Jang, Gill-Woong;Choi, Sun-Il;Han, Xionggao;Men, Xiao;Kwon, Hee-Yeon;Choi, Ye-Eun;Park, Byung-Woo;Kim, Jeong-Jin;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.544-551
    • /
    • 2020
  • The aim of this study was to develop and validate a simultaneous analytical method for berberine and palmatine, which are representative substances of Phellodendron amurense, and to evaluate the antioxidant activity. We evaluated the specificity, linearity, precision, accuracy, limit of detection (LOD), and limit of quantification (LOQ) of analytical methods for berberine and palmatine using high-performance liquid chromatography. Our result showed that the correlation coefficients of the calibration curve for berberine and palmatine exhibited 0.9999. The LODs for berberine and palmatine were 0.32 to 0.35 µg/mL and the LOQs were 0.97 to 1.06 µg/mL, respectively. The inter-day and intra-day precision values for berberine and palmatine were from 0.12 to 1.93 and 0.19 to 2.89%, respectively. The inter-day and intra-day accuracies were 98.43-101.45% and 92.39-100.60%, respectively. In addition, the simultaneous analytical method was validated for the detection of berberine and palmatine. Moreover, we conducted FRAP and NaNO2 scavenging activity assays to measure the antioxidant activities of berberine and palmatine, and both showed antioxidant activity. These results suggest that P.amurense could be a potential natural resource for antioxidant activity and that the efficacy can be confirmed by investigating the content of the berberine and palmatine.

Simultaneous determination of 11-nor-Δ9-carboxy-tetrahydrocannabinol and 11-nor-Δ9-carboxy-tetrahydrocannabinol-glucuronide in urine samples by LC-MS/MS and its application to forensic science (LC-MS/MS를 이용한 소변 중 11-nor-Δ9-carboxy-tetrahydrocannabinol 및 11-nor-Δ9-carboxy-tetrahydrocannabinol-glucuronide의 동시 분석 및 법과학적 적용)

  • Park, Meejung;Kim, Sineun
    • Analytical Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.259-266
    • /
    • 2021
  • Cannabis (Marijuana) is one of the most widely used drugs in the world, and its distribution has been controlled in South Korea since 1976. Identification of 11-nor-Δ9-carboxy-tetrahydrocannabinol (THCCOOH) in urine can provide important proof of cannabis use, and it is considered scientific evidence in the forensic field. In this study, we describe a simultaneous quantitative method for identifying THCCOOH and THCCOOH-glucuronide in urine, using simple liquid-liquid extraction (LLE), and liquid chromatography-tandem mass spectrometry (LC-MS/MS). THCCOOH-D3 and THCCOOH-glucuronide-D3 were used as internal standards. Validation results of the matrix effect, as well as recovery, linearity, precision, accuracy, process efficiency, and stability were all satisfactory. No carryover, endogenous or exogenous interferences were observed. The limit of detection (LOD) of THCCOOH and THCCOOH-glucuronide were 0.3 and 0.2 ng/mL, respectively. The developed method was applied to 28 authentic human urine samples that tested positive in immunoassay screening and gas chromatography/mass spectrometry (GC/MS) tests. The ranges of concentrations of THCCOOH and THCCOOH-glucuronide in the samples were less than LOQ~266.90 ng/mL and 6.43~2133.03 ng/mL, respectively. The concentrations of THCCOOH-glucuronide were higher than those of THCCOOH in all samples. This method can be effectively and successfully applied for the confirmation of cannabinoid use in human urine samples in the forensic field.

Investigation of Heavy Metal Migration from Food Contact Materials used for Food Delivery Using an Inductively Coupled Plasma-Mass Spectrometer

  • Chae-Yeon Hwang;Young-Jun Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.2
    • /
    • pp.37-45
    • /
    • 2023
  • The surge in food delivery systems during the coronavirus 2019 pandemic necessitated this study of heavy metal migration from food contact materials (FCMs). A total of 104 samples of FCMs, comprising 51 polypropylene (PP), 21 polyethylene (PE), and 32 polystyrene (PS) samples of six different types of FCMs (containers, covers, table utensils, cups, pouches, and wrappers) used for food delivery distributed in Korea, were collected and investigated for migration of three heavy metals (Pb, Cd, and As) using inductively coupled plasma-mass spectrometry (ICP-MS) to determine whether they complied with Korea's Standards and Specifications for Utensils, Containers, and Packages. Acetic acid (4%, v/v) was used as the food simulant, and tests were performed at 100℃ (in harsh conditions) for 30 min. Linearity of Pb, Cd, and As showed acceptable results with a coefficient of determination (R2) value of 0.9999. Limit of detection (LOD) and limit of quantification (LOQ) of Pb, Cd, and As were 0.001, 0.001, and 0.001 ㎍/L and 0.002, 0.003, and 0.003 ㎍/L, respectively. Accuracy and precision results complied with the criteria presented in the European Commission Joint Research Centre guidelines. The average concentration of Pb, Cd, and As migration detected in a total of 104 samples was 0.009-0.260 ㎍/L, which was very low compared with the migration specification set in the Standards and Specifications for Utensils, Containers, and Packages. The maximum level of Pb corresponded to 0.23% of the migration limit. There were no samples exceeding the limit. Thus, this study confirmed that the heavy metal contents of FCMs used for delivery food distributed in Korea were safely managed. The data from this study represent an invaluable source for science-based safety management of hazardous heavy metals migrating from FCMs used in the food delivery industry.

A study of analytical method for Benzo[a]pyrene in edible oils (식용유지 중 벤조피렌 분석법 비교 연구)

  • Min-Jeong Kim;jun-Young Park;Min-Ju Kim;Eun-Young Jo;Mi-Young Park;Nan-Sook Han;Sook-Nam Hwang
    • Analytical Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.291-299
    • /
    • 2023
  • The benzo[a]pyrene in edible oils is extracted using methods such as Liquid-liquid, soxhlet and ultrasound-assisted extraction. However these extraction methods have significant drawbacks, such as long extraction time and large amount of solvent usage. To overcome these drawbacks, this study attempted to improve the current complex benzo[a]pyrene analysis method by applying the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method that can be analyzed in a simple and short time. The QuEChERS method applied in this study includes extraction of benzo[a]pyrene into n-hexane saturated acetonitrile and n-hexane. After extraction and distribution using magnesium sulfate and sodium chloride, benzo[a]pyrene is analyzed by liquid chromatography with fluorescence detector (LC/FLR). As a result of method validation of the new method, the limit of detection (LOD) and quantification (LOQ) were 0.02 ㎍/kg and 0.05 ㎍/kg, respectively. The calibration curves were constructed using five levels (0.1~10 ㎍/kg) and coefficient (R2) was above 0.99. Mean recovery ratio was ranged from 74.5 to 79.3 % with a relative standard deviation (RSD) between 0.52 to 1.58 %. The accuracy and precision were 72.6~79.4 % and 0.14~7.20 %, respectively. All results satisfied the criteria ranges requested in the Food Safety Evaluation Department guidelines (2016) and AOAC official method of analysis (2023). Therefore, the analysis method presented in this study was a relatively simple pretreatment method compared to the existing analysis method, which reduced the analysis time and solvent use to 92 % and 96 %, respectively.

Development of a Simultaneous Analytical Method for Azocyclotin, Cyhexatin, and Fenbutatin Oxide Detection in Livestock Products using the LC-MS/MS (LC-MS/MS를 이용한 축산물 중 유기주석계 농약 Azocyclotin, Cyhexatin 및 Fenbutatin oxide의 동시시험법 개발)

  • Nam Young Kim;Eun-Ji Park;So-Ra Park;Jung Mi Lee;Yong Hyun Jung;Hae Jung Yoon
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.5
    • /
    • pp.361-372
    • /
    • 2023
  • Organotin pesticide is used as an acaricide in agriculture and may contaminate livestock products. This study aims to develop a rapid and straightforward analytical method for detecting organotin pesticides, specifically azocyclotin, cyhexatin, and fenbutatin oxide, in various livestock products, including beef, pork, chicken, egg, and milk, using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The extraction process involved the use of 1% acetic acid in a mixture of acetonitrile and ethyl acetate (1:1). This was followed by the addition of anhydrous magnesium sulfate (MgSO4) and anhydrous sodium chloride. The extracts were subsequently purified using octadecyl (C18) and primary secondary amine (PSA), after which the supernatant was evaporated. Organotin pesticide recovery ranged from 75.7 to 115.3%, with a coefficient of variation (CV) below 25.3%. The results meet the criteria range of the Codex guidelines (CODEX CAC/GL 40). The analytical method in this study will be invaluable for the analysis of organotin pesticides in livestock products.

Studies on Xylooligosaccharide Analysis Method Standardization using HPLC-UVD in Health Functional Food (건강기능식품에서 HPLC-UVD를 이용한 자일로올리고당 시험법의 표준화 연구)

  • Se-Yun Lee;Hee-Sun Jeong;Kyu-Heon Kim;Mi-Young Lee;Jung-Ho Choi;Jeong-Sun Ahn;Kwang-Il Kwon;Hye-Young Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.2
    • /
    • pp.72-82
    • /
    • 2024
  • This study aimed to develop a scientifically and systematically standardized xylooligosaccharide analytical method that can be applied to products with various formulations. The analysis method was conducted using HPLC with Cadenza C18 column, involving pre-column derivatization with 1-phenyl-3-methyl-5-pyrazoline (PMP) and UV detection at 254 nm. The xylooligosaccharide content was analyzed by converting xylooligosaccharide into xylose through acid hydrolysis. The pre-treated methods were compared and evaluated by varying sonication time, acid hydrolysis time, and concentration. Optimal equipment conditions were achieved with a mobile phase consisting of 20 mM potassium phosphate buffer (pH 6)-acetonitrile (78:22, v/v) through isocratic elution at a flow rate of 0.5 mL/min (254 nm). Furthermore, we validated the advanced standardized analysis method to support the suitability of the proposed analytical procedure such as specificity, linearity, detection limits (LOD), quantitative limits (LOQ), accuracy, and precision. The standardized analysis method is now in use for monitoring relevant health-functional food products available in the market. Our results have demonstrated that the standardized analysis method is expected to enhance the reliability of quality control for healthy functional foods containing xylooligosaccharide.

A Monitoring of Aflatoxins in Commercial Herbs for Food and Medicine (식·약공용 농산물의 아플라톡신 오염 실태 조사)

  • Kim, Sung-dan;Kim, Ae-kyung;Lee, Hyun-kyung;Lee, Sae-ram;Lee, Hee-jin;Ryu, Hoe-jin;Lee, Jung-mi;Yu, In-sil;Jung, Kweon
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.4
    • /
    • pp.267-274
    • /
    • 2017
  • This paper deals with the natural occurrence of total aflatoxins ($B_1$, $B_2$, $G_1$, and $G_2$) in commercial herbs for food and medicine. To monitor aflatoxins in commercial herbs for food and medicine not included in the specifications of Food Code, a total of 62 samples of 6 different herbs (Bombycis Corpus, Glycyrrhizae Radix et Rhizoma, Menthae Herba, Nelumbinis Semen, Polygalae Radix, Zizyphi Semen) were collected from Yangnyeong market in Seoul, Korea. The samples were treated by the immunoaffinity column clean-up method and quantified by high performance liquid chromatography (HPLC) with on-line post column photochemical derivatization (PHRED) and fluorescence detection (FLD). The analytical method for aflatoxins was validated by accuracy, precision and detection limits. The method showed recovery values in the 86.9~114.0% range and the values of percent coefficient of variaton (CV%) in the 0.9~9.8% range. The limits of detection (LOD) and quantitation (LOQ) in herb were ranged from 0.020 to $0.363{\mu}g/kg$ and from 0.059 to $1.101{\mu}g/kg$, respectively. Of 62 samples analyzed, 6 semens (the original form of 2 Nelumbinis Semen and 2 Zizyphi Semen, the powder of 1 Nelumbinis Semen and 1 Zizyphi Semen) were aflatoxin positive. Aflatoxins $B_1$ or $B_2$ were detected in all positive samples, and the presence of aflatoxins $G_1$ and $G_2$ were not detected. The amount of total aflatoxins ($B_1$, $B_2$, $G_1$, and $G_2$) in the powder and original form of Nelumbinis Semen and Zizyphi Semen were observed around $ND{\sim}21.8{\mu}g/kg$, which is not regulated presently in Korea. The 56 samples presented levels below the limits of detection and quantitation.

A Study on the Safety of Mycotoxins in Grains and Commonly Consumed Foods (곡류 등 다소비 식품 중 곰팡이독소 안전성 조사 연구)

  • Kim, Jae-Kwan;Kim, Young-Sug;Lee, Chang-Hee;Seo, Mi Young;Jang, Mi Kyung;Ku, Eun-Jung;Park, Kwang-Hee;Yoon, Mi-Hye
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.6
    • /
    • pp.470-476
    • /
    • 2017
  • The purpose of this study was to investigate and evaluate the safety of the grains, nut products, beans and oilseeds being sold in Gyeonggi province by analyzing mycotoxins. A multi-mycotoxins analysis method based on LC-MS/MS was validated and applied for the determination of eight mycotoxins, including aflatoxins ($B_1$, $B_2$, $G_1$ and $G_2$), fumonisins ($B_1$, $B_2$), zearalenone and ochratoxcin A in 134 samples. The limit of detection (LOD) and limit of quantitation (LOQ) for the eight mycotoxins ranged from 0.14 to $8.25{\mu}g/kg$ and from 1.08 to $7.21{\mu}g/kg$, respectively. Recovery rates of mycotoxins were determined in the range of 61.1 to 97.5% with RSD of 1.0~14.5% (n=3). Fumonisin $B_1$, $B_2$, zearalenone, and ochratoxin A were detected in 22 samples, indicating that 27% of grains, 12.5% of beans and 11.8% of oilseeds were contaminated. Fumonisin and zearalenone were detected simultaneously in 2 adlays and 3 sorghums. Fumonisin $B_1$ and $B_2$ were detected simultaneously in most samples whereas fumonisin $B_1$ was detected in 1 adlay, 1 millet and 1 sesame sample. The average detected amount of fumonisin was $49.3{\mu}g/kg$ and $10.1{\mu}g/kg$ for grains and oilseeds, respectively. The average detected amount of zearalenone was $1.9{\mu}g/kg$ and $1.5{\mu}g/kg$ for grains and beans, respectively. In addition, the average amount of ochratoxin A was $0.08{\mu}g/kg$ for grains. The calculated exposure amounts of fumonisin, zeralenone and ochratoxin A for grains, beans and oilseeds were below the PMTDI/PTWI.