• Title/Summary/Keyword: LONG-TERM MONITORING

Search Result 1,356, Processing Time 0.034 seconds

Principles and Applications of Multi-Level H2O/CO2 Profile Measurement System (다중 수증기/이산화탄소 프로파일 관측 시스템의 원리와 활용)

  • Yoo, Jae-Ill;Lee, Dong-Ho;Hong, Jin-Kyu;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.27-38
    • /
    • 2009
  • The multi-level profile system is designed to measure the vertical profile of $H_2O$ and $CO_2$ concentrations in the surface layer to estimate the storage effects within the plant canopy. It is suitable for long-term experiments and can be used also in advection studies for estimating the spatial variability and vertical gradients in concentration. It enables the user to calculate vertical fluxes of water vapor, $CO_2$ and other trace gases using the surface layer similarity theory and to infer their sources or sinks. The profile system described in this report includes the following components: sampling system, calibration and flow control system, closed path infrared gas analyzer(IRGA), vacuum pump and a datalogger. The sampling system draws air from 8 inlets into the IRGA in a sequence, so that for 80 seconds air from all levels is measured. The calibration system, controlled by the datalogger, compensates for any deviations in the calibration of the IRGA by using gas sources with known concentrations. The datalogger switches the corresponding valves, measures the linearized voltages from the IRGA, calculates the concentrations for each monitoring level, performs statistical analysis and stores the final data. All critical components are mounted in an environmental enclosure and can operate with little maintenance over long periods of time. This report, as a practical manual, is designed to provide helpful information for those who are interested in using profile system to measure evapotranspiration and net ecosystem exchanges in complex terrain.

Evaluation of Thermal Movements of a Cable-Stayed Bridge Using Temperatures and Displacements Data (온도와 변위 데이터를 이용한 사장교의 온도신축거동 평가)

  • Park, Jong Chil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.779-789
    • /
    • 2015
  • Because cable-supported bridges have long spans and large members, their movements and geometrical changes by temperatures tend to be bigger than those of small or medium-sized bridges. Therefore, it is important for maintenance engineers to monitor and assess the effect of temperature on the cable-supported bridges. To evaluate how much the superstructure expands or contracts when subjected to changes in temperature is the first step for the maintenance. Thermal movements of a cable-stayed bridge in service are evaluated by using long-term temperatures and displacements data. Displacements data are obtained from extensometers and newly installed GNSS (Global Navigation Satellite System) receivers on the bridge. Based on the statistical data such as air temperatures, each sensor's temperatures, average temperatures and effective temperatures, correlation analysis between temperatures and displacements has been performed. Average temperatures or effective temperatures are most suitable for the evaluation of thermal movements. From linear regression analysis between effective temperatures and displacements, the variation rate's of displacement to temperature have been calculated. From additional regression analysis between expansion length's and variation rate's of displacement to temperature, the thermal expansion coefficient and neutral point have been estimated. Comparing these parameters with theoretical and analytical results, a practical procedure for evaluating the real thermal behaviors of the cable-supported bridges is proposed.

Review of Material Flow Analysis Related Activities of Developed Countries for the Improvement of Resources Efficiency and Sustainability (자원 효율성 및 지속 가능성 증진을 위한 선진국 물질흐름분석 관련활동에 대한 평가)

  • Kim, Seong-Yong
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.615-626
    • /
    • 2006
  • The natural resources and material life-cycle include all human activities related to resources and material extraction, transportation, processing, use, recovery and disposal. Sustainable material management (SMM) is an integrated set of policy approaches targeted on economic agents throughout the material life-cycles and designed to result in economically efficient and environmentally effective material use. The material flows of industrial mineral, ores and fossil fuels have also long been a focal area for environmental policies because of the high environmental pressures associated with extraction, processing, consumption, and final disposal of these materials. OECD work on material flow is to improve the quantitative and analytical knowledge bases about natural resource and material flows within and among countries, so as to better understand the importance of material resources in member countries' economies. In several EU Member States, material flow accounts are part of official statistics. Material flow analysis (MFA) is a valuation method which assesses the efficiency of use of materials using information from material flow accounting. Material flow analysis helps to identify waste of natural resources and other materials in the economy which would otherwise go unnoticed in conventional economic monitoring systems. Resource use and resource efficiency has emerged as a major issue for long-term sustainability and environmental policy.

Characterization of Microbial Community in the Leachate Associated with the Decomposition of Entombed Pigs

  • Yang, Seung-Hak;Hong, Sun Hwa;Cho, Sung Back;Lim, Joung Soo;Bae, Sung Eun;Ahn, Heekwon;Lee, Eun Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1330-1335
    • /
    • 2012
  • Foot and mouth disease (FMD) is one of the acute infectious diseases in hoofed and even-toed mammals, including pigs, and it occurs via acute infection by Aphthovirus. When FMD is suspected, animals around the location of origin are typically slaughtered and buried. Other methods such as rendering, composting, and incineration have not been verified in practice in Korea. After the FMD incident, the regular monitoring of the microbial community is required, as microorganisms greatly modify the characteristics of the ecosystem in which they live. This is the result of their metabolic activities causing chemical changes to take place in the surrounding environment. In this study, we investigated changes in the microbial community during a 24 week period with DNA extracts from leachate, formed by the decomposition of buried pigs at a laboratory test site, using denaturing gradient gel electrophoresis (DGGE) with a genomic DNA. Our results revealed that Bacteroides coprosuis, which is common in pig excreta, and Sporanaerobacter acetigenes, which is a sulfur-reduced microbe, were continuously observed. During the early stages (0~2 weeks) of tissue decomposition, Clostridium cochlearium, Fusobacterium ulcerans, and Fusobacterium sp., which are involved in skin decomposition, were also observed. In addition, various microbes such as Turicibacter sanguinis, Clostridium haemolyticum, Bacteroides propionicifaciens, and Comamonas sp. were seen during the later stages (16~24 weeks). In particular, the number of existing microbial species gradually increased during the early stages, including the exponential phase, decreased during the middle stages, and then increased again during the later stages. Therefore, these results indicate that the decomposition of pigs continues for a long period of time and leachate is created continuously during this process. It is known that leachate can easily flow into the neighboring environment, so a long-term management plan is needed in burial locations for FMD-infected animals.

A Study on Conservation and Management of the Joseon Royal Tomb's System - Focused on Joseon Royal Tombs of Middle District in Seoul - (조선왕릉의 능제보존관리에 관한 연구 - 서울 중부지구 조선왕릉을 중심으로 -)

  • Choi, Jong-Hee;Lee, Chang-Hwan;Hwang, Kyu-Man;Kim, Kyu-Yeon
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.35 no.4
    • /
    • pp.43-55
    • /
    • 2017
  • The purpose of this study is to investigate conservation and management methods of the Joseon Royal Tombs in the Middle District. Urbanization has damaged many of the original terrains as many buildings and facilities have entered the inner and outer area of Joseon Royal Tombs. Land purchase, relocation and demolition of the building are required for the recovery of the Royal Tombs area, and then it is necessary to recover the original terrain. In the case of land use and pathways, there were many land use which harmed the sacred atmosphere of the area, and many disconnection of the ritual circulation, they should be maintained to remind the sacred atmosphere of the royal tomb. The water system should be changed to natural type canal, and it is necessary to collect accurate information on the lost buildings and stoneworks through literature survey and excavation investigation, and then lead to the exposure or restoration of the ruins. Historical forests require periodic and ongoing monitoring and management, and it is necessary to establish a historical and cultural museum that can provide to visitors information about Joseon Royal Tombs. These works should be classified into short, medium and long-term projects with a long perspective to implement continuous and systematic projects.

A Case Study on the Conservation and Value Improvement of Korean Geological Heritage (우리나라 지질유산의 보존과 가치 증진을 위한 사례 연구)

  • Lim, Jong-deock
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.2
    • /
    • pp.114-135
    • /
    • 2013
  • Among the UNESCO World Heritage Sites, the proportion of natural heritage to cultural heritage is relatively small. In 2007, the "Jeju Volcanic Island and Larva Tubes" was the first one that was designated as an UNESCO World Natural Heritage Site in Korea. The growing Korean geological heritage condition and conservation case studies on management of the geological heritage were examined in this study. Furthermore, the purpose of this study is to show future driving strategy for conservation and improvement plan on our geological heritage. Natural Monuments as a state-designated natural property and Geoparks as a new application system for geological heritage are important to conserve our geological heritage. Public engagement through establishment of visitor centers is definitely needed to improve education and promotion. The study includes field investigation for the "Wadden Sea", an World Natural Heritage Site for a mud flat, interviews with staffs and experts who are responsible for investigating and managing the site. Three factors can likely be attributed to its successful management and conservation policy for the "Wadden Sea". First of all, there is an operation for integrated management system and joint secretariat for research and monitoring. Next, researchers invigorate the visitor centers for promotion and education on geological heritage. Finally, experts and staffs implement various research topics and projects based on a long-range plan. The study was carried out to evaluate the present condition of our geological heritage and to make a proposal as a policy to improve value and conserve them. In conclusion, this study provided future discussion that may help researchers to make a decision on long-term policies for the geological subject of Korean natural heritage.

Contamination Characteristics of Hazardous Air Pollutants in Particulate Matter in the Atmosphere of Ulsan, Korea (울산시 미세먼지의 유해대기오염물질 오염 특성)

  • Lee, Sang-Jin;Kim, Seong-Joon;Park, Min-Kyu;Cho, In-Gyu;Lee, Ho-Young;Choi, Sung-Deuk
    • Journal of Environmental Analysis, Health and Toxicology
    • /
    • v.21 no.4
    • /
    • pp.281-291
    • /
    • 2018
  • Recently, long-range atmospheric transport (LRAT) from China is regarded as a major reason for elevated levels of particulate matter (PM) in Korea. However, local emissions also play an important role in PM pollution, especially in large-scale industrial cities. In this study, PM samples were collected at suburban, residential, and industrial sites in Ulsan, Korea. Polycyclic aromatic hydrocarbons (PAHs) and heavy metals were analyzed, and a potential human health risk assessment was conducted. The concentrations of PAHs and heavy metals in total suspended particles (TSP) increased during high $PM_{10}$ episodes, and backward trajectory analysis verified the influence of LRAT from China during the high episodes. Furthermore, the concentrations of PAHs and heavy metals in $PM_{2.5}$ and $PM_{10}$ at the industrial site were higher than those at the residential site. The risk assessment of PAHs and heavy metals in $PM_{2.5}$ suggested no significant health effects. The highest levels of PAHs were measured in the particle size of $0.32{\sim}0.56{\mu}m$ at the residential site, and those of heavy metals were detected in the particle size of 1.8~5.6 and $>18{\mu}m$, reflecting different major emissions sources for both groups. On the basis of this preliminary study, we are planning long-term monitoring and modeling studies to quantitatively evaluate the influence of industrial activities on the PM pollution in Ulsan.

A Conceptual Framework for One Source Multi Use Strategy of Culture Content (브랜드 아이덴티티 기반 문화콘텐츠 OSMU 전략 연구)

  • Kim, Young-Jae
    • Cartoon and Animation Studies
    • /
    • s.28
    • /
    • pp.155-180
    • /
    • 2012
  • This article is to propose a conceptual framework for the One Source Multi Use (OSMU) strategic model of culture content. In this study, OSMU is defined as a series of marketing activities to increase the value created by culture content. The framework of brand equity strategy is applied to develop the strategic model of OSMU, as both share the same goal - maximization of long term value created by brand or culture content. This article suggests the brand identity-based OSMU strategic model, in which the brand identity of culture content guides, integrates, and coordinates every decision-making of OSMU activities. For the maximization of brand equity value of culture content, the copyright holder of original content should decide the content's brand identity, which should provide the criteria of all decision makings regarding window strategy, adaptation of content to other genre, and merchandising. This brand identity-based OSMU strategic model can not only contribute to the sales of OSMU content, but also the creation of high equity culture content in the long run. Also, the model allows monitoring and evaluation of content's brand equity, which can be used for the strategic adjustment for the sake of long term value of the content. This study is differentiated from previous study on OSMU and expected to invigorate the further discussion on OSMU in several points. First, it broadens the scope of OSMU discussion as it views OSMU as a series of process including feedback. Second, this study points out the need for integration and coordination of various OSMU activities. Third, the strategic focus is laid on the value maximization of the original content, not 'multi used' content. Fourth, the suggested model emphasize the strategic role of copyright holder who takes the charge of the content brand management. Fifth, the model requires discussion on the components of marketing communication in addition to the content itself, which means the model includes the prospects, not only the content consumers, as the major future source for value creation.

Topographical Change Monitoring of the Sandbar and Estimation of Suspended Solid Flux in the Nakdong River Estuary - Focused on Jinudo - (낙동강 하구역 사주지형 변동과 부유사(SS) 수송량 산정 - 진우도를 중심으로 -)

  • Lee, I.C.;Lim, S.P.;Yoon, H.S.;Kim, H.T.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.2
    • /
    • pp.70-77
    • /
    • 2008
  • In this study, to establish countermeasure from marine casualties as a basic study fur long-term prediction of topographical change around Jinudo in the Nakdong river estuary, spatio-temporal topographical change monitoring was carried out. Also, in order to estimate the deposition variations concerning SS (Suspended Solid) flux which moved at St.S1 during neap and spring tide, respectively. From the topographical monitoring, it was found that the annual mean ground level and deposition rate were 141 mm and 0.36 mm/day and all parts except the northern part of Jinudo had the active topographical changes and a tendency to annually deposit. From vertical distribution of SS net fluxes, $SS_{LH}$ (latitudinal SS net flux) during spring tide overall flows average 28 $kg/m^2/hr$ (eastward), and $SS_{LV}$ (longitudinal SS net flux) flows average 11.1 $kg/m^2/hr$ (northward). And, $SS_{LH}$ overall flows average 4.8 $kg/m^2/hr$ (eastward), and $SS_{LV}$ flows average 1.5 $kg/m^2/hr$ (northward) during neap tide similar with spring tide. The depth averaged values of the latitudinal and longitudinal SS net fluxes during spring tide were approximately 6 times higher than those during neap tide. As result of, it was considered that topographical change of southern part of Jinudo was affected by resuspension of bottom sediments due to strong current in bottom layer during flood flow.

  • PDF

Natural Baseline Groundwater Quality in Shingwang-myeon and Heunghae-eup, Pohang, Korea (포항시 신광면 및 흥해읍 일대 지하수의 배경수질 연구)

  • Lee, Hyun A;Lee, Hyunjoo;Kwon, Eunhye;Park, Jonghoon;Woo, Nam C.
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.469-483
    • /
    • 2020
  • The results of long-term groundwater level and quality monitoring can be used not only as the basic data for evaluating the impact of various disasters including climate change and establishing responses, but also as key data for predicting and managing geological disasters such as earthquakes. Some countries use groundwater level and quality monitoring for researches to predict earthquakes and to assess the impacts of the earthquake disaster. However, a few cases in Korea report on individual groundwater quality factors (i.e., dissolved ions) observed before and after the earthquakes, being different from other countries. To establish the abnormality criteria for groundwater quality in Pohang, groundwater samples were collected and analyzed five times from 14 agricultural or private wells existing in Shingwang-myeon and Heunghae-eup. As a result of the analysis, it was found that Ca2+ was the dominant cation in Shingwang-myeon, while Na+ was the dominant cation in Heunghae-eup. The elevated NO3- concentration in Shingwang-myeon is contributed to the agricultural activity in the area. A high concentration of Fe was detected in a well on Heunghae-eup; the concentration exceeded the drinking water standard by nearly 100 times. Relatively higher dissolved ions were observed in the groundwater of Heunghae-eup, and it is considered as the result of the flow velocity difference and water-rock reaction accompanying the difference in bedrock and sediment characteristics. The groundwater of Shingwang-myeon appeared to be most affected by the weathering of granite and silicates, while that of Heunghae-eup was mainly affected by the weathering of silicates and carbonate. The background concentrations (baselines) of groundwater Shingwang-myeon and Heunghae-eup was identified through the survey; however, the continuous monitoring is required to monitor the possible changes and the repeatability of seasonal variation.