• Title/Summary/Keyword: LNG-Tank

Search Result 405, Processing Time 0.022 seconds

Review about Thermal Stability Reinforcing Method of the Concrete Sidewall of the LNG Storage Tank Using Sprayed PUF (스프레이 PUF를 이용한 LNG 저장탱크 외조 벽체의 열적 안정성 강화 방법에 대한 고찰)

  • Lee, Yeongbeom;Choe, Keonhyeong;Yoon, Ihnsoo;Han, Chonghun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 2014
  • LNG storage tank is a facility to store liquefied natural gas (LNG) and its safety and stability to be greatly needed. When there is a LNG leakage in case of primary container problem, a special facility such as a bund wall should be constructed to store the leaked LNG. But this method makes the land usage inefficient and construction price high. So nowadays the full containment type LNG storage tank is selected instead of constructing a bund wall. In the full containment type tank, the concrete sidewall has the ability to store LNG temporarily. There are largely two methods to give the concrete sidewall the ability. In a method, rebar should be used when constructing the side wall of the LNG storage tank. In the other method, the protecting material such as sprayed polyurethane foam should be applied on the inner surface of the concrete sidewall. Sprayed PUF keeps the temperature of the sidewall above the specified temperature during the specified periods. Recently the thermal stability reinforcing method using sprayed polyurethane foam has been applied to all LNG storage tank built in Korea.

Study on the Fire Safety Estimation for a Pilot LNG Storage Tank (PILOT LNG저장탱크의 화재안전성 평가에 관한 연구)

  • 고재선;김효
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.57-73
    • /
    • 2004
  • Quantitative safety analysis through a fault tree method has been conducted for a fire broken out over the spilling LNG from a pilot LNG tank, which may have 4 types of scenarios causing potentially risky results. When we consider LNG release from venting pipelines as a first event, any specific radius of Low Flammable Limit(LFL) has not been built up. The second case of LNG outflow from the rupture of storage tank which will be the severest has been analyzed and the results revealed various diffusion areas to the leaking times even with the same amount of LNG release. As a third case LNG leakage from the inlet/outlet pipelines was taken into consider. The results showed no significant differences of LFL radii between the two spilling times of 10 and 60 minutes. Hence, we have known the most affecting factor on the third scenario is an initial amount of LNG release. Finally, the extent of LFL was calculated when LNG pipelines around the dike area were damaged. In addition, consequence analysis has been also performed to acquire the heat radiation and flame magnitude for each case.

On the Leakage Safety Analysis of Membrane LNG Storage Tank With Thermal Resistance Effects (열저항 효과를 고려한 멤브레인식 LNG 저장탱크의 누설 안전성에 관한 연구)

  • Kim C.K.;Cho S.H.;Suh H.S.;Hong S.H.;Lee S.R.;Kim Y.G.;Kwon B.K.
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.4 s.25
    • /
    • pp.1-7
    • /
    • 2004
  • In this paper, the FE analysis has been presented for the leakage safety of the membrane LNG storage tank based on the thermal resistance effects between the insulation panel and prestressed concrete structure. The FEM calculated results show that the leakage safety of plywood and polyurethane materials does not guarantee any more due to a strength failure of the insulation structure. But the PC structure of outer tank may delay leaked LNG of 10 days even though the inner tank and insulation structure are simultaneously failed. This means that the membrane LNG storage tank may be safe because of the stiffness of the outer tank.

  • PDF

The Evaluation of Mechanical Properties and Fatigue Life for Domestic 304 Stainless Steel Used as Membrane Material in LNG Storage Tank (LNG저장탱크의 멤브레인용 국산 304 스테인리스강의 기계적성질 및 피로수명 평가)

  • Kim, Hyeong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1644-1650
    • /
    • 2001
  • Mechanical properties of domestic 374 stainless steel have been evaluated fur membrane material used in LNG storage tank. LNG tank is operated around -162$^{\circ}C$. The temperature of membrane depends on LNG level. Accordingly, the membrane material is deteriorated by variation of liquid pressure and temperature. Tensile test and fatigue life test were performed at room temperature and -l62$^{\circ}C$ per code requirements. Especially the biaxial fatigue life test was conducted with shaped membrane sheet at a thermal strain of $\Delta$T=190$^{\circ}C$ The test results obtained with the domestic 304 stainless steel showed better properties compared to the values required by code.

A Study on the District Community Cooling System using LNG Cold Energy (LNG 냉열이용 지역집단 냉방시스템에 대한 연구)

  • Kim, Chung-Kyun;Kim, Seung-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.6
    • /
    • pp.27-30
    • /
    • 2010
  • This paper presents the system design process of district community cooling system using LNG cold energy. The newly developed LNG cooling system includes several heat exchangers, LNG storage tank, thermal mass storage tank, several cold energy storage tanks, gas air-conditioners, compressors, constant pressure regulators, cold energy and hot energy supply pipes. In addition, the gas air-conditioner system is installed to supply not sufficient cold energy due to low level of city gas consumptions during a summer period. This system design is very effective and safe to supply cold energy mass of fresh air by exchanging two thermal masses of an air and 200kcal/kg cold energy of LNG. The district community cooling system with LNG cold energy does not produce CO2 and freon gases in the air.

Analytical Assessment of Blast Damage of 270,000-kL LNG Storage Outer Tank According to Explosive Charges (270,000 kL급 LNG 저장 탱크 외조의 폭발량에 따른 손상도 해석적 평가)

  • Kim, Jang-Ho Jay;Choi, Seung-Jai;Choi, Ji-Hun;Kim, Tae-Kyun;Lee, Tae-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.685-693
    • /
    • 2016
  • The outer tank of a liquefied natural gas (LNG) storage tank is a longitudinally and meridionally pre-stressed concrete (PSC) wall structure. Because of the current trend of constructing larger LNG storage tanks, the pre-stressing forces required to increase wall strength must be significantly increased. Because of the increase in tank sizes and pre-stressing forces, an extreme loading scenario such as a bomb blast or an airplane crash needs to be investigated. Therefore, in this study, the blast resistance performance of LNG storage tanks was analyzed by conducting a blast simulation to investigate the safety of larger LNG storage tanks. Test data validation for a blast simulation of reinforced concrete panels was performed using a specific FEM code, LS-DYNA, prior to a full-scale blast simulation of the outer tank of a 270,000-kL LNG storage tank. Another objective of this study was to evaluate the safety and serviceability of an LNG storage tank with respect to varying amounts of explosive charge. The results of this study can be used as basic data for the design and safety evaluation of PSC LNG storage tanks.

A Study on the Buckling Strength of the Skirt Structure in the Spherical LNG Carriers (구형 LNG운반선의 탱크지지 구조인 스커트의 좌굴강도에 대한 연구)

  • Kim, Ul-Nyeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.393-405
    • /
    • 2017
  • This paper deals with the buckling strength of the skirt structure in the spherical LNG carriers. The spherical cargo tank systems consist of spherical tank, skirt, tank cover, pump tower, etc. The skirt supports the spherical cargo tank and is connected with ship hull structure. It is designed to act as a thermal brake between the tank and the hull structure by reducing the thermal conduction from the tank to the supporting structure. It is built up of three parts, upper aluminum part, middle stainless steel part and lower carbon steel part. The 150K spherical LNG carrier was designed and carried out the strength verification under Classification Societies Rule. The design loads due to acceleration, thermal distribution, self-weight and cargo weight were estimated considering requirements of the Class Rule and numerical simulation analyses. Based on the obtained design loads and experienced project data, the initial structure scantling was carried out. To verify the structural integrity, theoretical and numerical analyses were carried out and strength was evaluated aspect of buckling capacity. The results by LR and DNV design code are shown and discussed.

A study on the safety improvement of above ground membrane LNG storage tank (상지상식 멤브레인 액화천연가스 저장탱크의 안전성 향상 방안)

  • Lee, Seung Rim;Kim, Han Sang
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.339-345
    • /
    • 2012
  • RMembrane LNG storage tanks have been recently investigated to replace full-containment LNG storage tanks because of safety and cost aspects. Quantitative Risk Analysis (QRA) and Finite Element Method (FEM) were used to evaluate safety of membrane LNG storage tanks. In this study, structural safety evaluation results via FEM analysis showed that both membrane type and full-containment type cryogenic LNG storage tanks with 140,000 $m^3$ capacity were equivalently safe in terms of strength safety and leakage safety of a storage tank system. Also, Fault Tree Analysis (FTA) was used to improve the safety of membrane LNG storage tanks and membrane LNG tanks were modified by adding three safety equipments: impact absorber structure for the low part of the membrane, the secondary barrier to diminish the thermal stress of the corner part of the outer tank, and a pump catcher in case of falling of a pump. Consequently, the safety of the modified membrane LNG storage tanks were proved to be equivalent to that of full-containment LNG storage tanks.

Consistent thermal analysis procedure of LNG storage tank

  • Jeon, Se-Jin;Jin, Byeong-Moo;Kim, Young-Jin;Chung, Chul-Hun
    • Structural Engineering and Mechanics
    • /
    • v.25 no.4
    • /
    • pp.445-466
    • /
    • 2007
  • As the LNG (Liquefied Natural Gas) tank contains cryogenic liquid, realistic thermal analyses are of a primary importance for a successful design. The structural details of the LNG tank are so complicated that some strategies are necessary to reasonably predict its temperature distribution. The proposed heat transfer model can consider the beneficial effects of insulation layers and a suspended deck on temperature distribution of the outer concrete tank against cryogenic conditions simply by the boundary conditions of the outer tank model. To this aim, the equilibrium condition or heat balance in a steady state is utilized in a various way, and some aspects of heat transfer via conduction, convection and radiation are implemented as necessary. Overall thermal analysis procedures for the LNG tank are revisited to examine some unjustifiable assumptions of conventional analyses. Concrete and insulation properties under cryogenic condition and a reasonable conversion procedure of the temperature-induced nonlinear stress into the section forces are discussed. Numerical examples are presented to verify the proposed schemes in predicting the actual temperature and stress distributions of the tank as affected by the cryogenic LNG for the cases of normal operation and leakage from the inner steel tank. It is expected that the proposed schemes enable a designer to readily detect the effects of insulation layers and a suspended deck and, therefore, can be employed as a useful and consistent tool to evaluate the thermal effect in a design stage of an LNG tank as well as in a detailed analysis.

Structural Analysis for Design of Anchor Straps for a Large-Scale LNG Storage Tank with Corner Protection and Inner Tank (코너프로텍션과 내조를 고려한 대용량 LNG 저장탱크 앵커스트랩의 구조설계를 위한 유한요소해석)

  • Jin, Chengzhu;Ha, Sung-Kyu;Kim, Seong-Jong;Lee, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1543-1548
    • /
    • 2011
  • Structural analysis is performed to design anchor straps for a large-scale-liquefied-natural-gas (LNG) storage tank with corner protection and an inner tank by considering structural integrity. Anchor straps made of 9% nickel steel are attached to the inner tank, corner protection, and concrete raft to prevent the failure of the inner tank during both normal and emergency operating conditions. Two finite element (FE) models were analyzed in this study. One is a stand-alone model of the anchor strap, while the other is an extended model of the substructure of the anchor strap, inner tank, and corner protection. Three-dimensional shell elements are used to effectively assess the bending and axial behavior of structures. The Tresca stress values in each part of the two models are calculated for operation under five different load-condition cases: normal operation, leakage of the LNG, hydro test, and two earthquake conditions.