• Title/Summary/Keyword: LNG storage tank

Search Result 211, Processing Time 0.023 seconds

The Method of Thermal Crack Control about the LNG Tank Wall in Winter (LNG 저장탱크 벽체의 동절기 온도균열제어 방안)

  • Son, Young-Jun;Ha, Jae-Dam;Um, Tai-Sun;Lee, Jong-Ryul;Baek, Seung-Jun;Park, Chan-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.637-640
    • /
    • 2008
  • Since the first underground LNG tank was constructed in Incheon, continuously many LNG tanks were constructed in Tongyoung and Pyongtaek. The storage capacity of LNG tank increased by 200,000kl and the structure size and the concrete mixing design has changed. The crack of concrete induced by the heat of hydration is a serious problem, particularly in massive concrete structures. In order to control the thermal crack of massive concrete, the low heat portland cement(type Ⅳ) is applied to bottom annular part, bottom central part, lower walls and ring beam. In this study, in order to thermal crack control about the LNG tank wall(lot 8 of #16 Pyongtaek LNG tank) in winter, analysed the concrete temperature, the extention of term, the curing condition and the concrete mixing design. When the concrete mixing design is changed from OPC+FA25% to LHC+FA25%, the thermal crack index is 1.33 and satisfied with construction specifications(over 1.2).

  • PDF

Optimized Design of Roof Structure in LNG Storage Tank (LNG저장탱크의 지붕 구조물에 관한 최적설계 연구)

  • Kim, Chung-Kyun;Kim, Han-Goo
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.36-43
    • /
    • 2005
  • In this paper, the optimized design of a roof structure f3r a LNG outer tank has been analyzed using the Taguchi design method. This method may efficiently optimize the design parameters of a LNG roof structure in terms of H beam and L beam structures, and a thickness of a concrete structure. The FEM computed results indicate that the thickness of a concrete structure is a dominant factor of a roof structure design. The H and L beam structures do not affect a maximum stress and deformation of a reinfarced roof structure. This means that H and L beam structures only support a dead weight of a concrete roof during a consolidation of a reinforced concrete. Based on the computed results by the Taguchi design method, the number of beams and thickness of a reinforced concrete are given as H=30, L=7, and t=1.2m.

  • PDF

The Evaluation of flexure performance of SCP modules for LNG outer tank (LNG 외조탱크 적용을 위한 SCP 모듈의 휨성능 평가)

  • Park, Jung-Jun;Park, Gi-Joon;Kim, Sung-Wook;Kim, Eon;Shin, Dongkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.447-455
    • /
    • 2019
  • When constructing LNG storage structures using the cast-in-place method in extreme areas, the construction cost and time may be increased due to the poor working environments and conditions. Therefore, demand for modular energy storage tanks is increasing. In this study, we propose using an SCP module as an alternative for lighter-weight LNG storage tanks. The purpose of this study is to evaluate the feasibility of LNG storage outer tanks by performing bending tests on the thickness of composite steel plate concrete under field conditions. The loads on specimens with thicknesses of 100 mm and 200 mm were linearly increased to the design final loads of 413 kN and 822 kN, respectively. The slope was rapidly changed, and fracture occurred. The two test conditions showed linear behavior until the steel plate yielded, and after an extreme load behavior, sudden yielding of the steel plate yield occurred in the SCP bending test according to the INCA guidelines. The results satisfied the design flexural load and showed the possibility of using the specimens in a modular LNG outer tank. However, it is necessary to evaluate the structural performance of the SCP by performing compression and shear tests in future research.

Free Vibration Analysis of Aboveground LNG-Storage Tanks by the Finite Element Method

  • Cho, Jin-Rae;Lee, Jin-Kyu;Song, Jeong-Mok;Park, Suk-Ho;Lee, Joong-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.633-644
    • /
    • 2000
  • Recently, in proportion to the increase of earthquake occurrence-frequency and its strength in the countries within the circum-pan Pacific earthquake belt, a concept of earthquake-proof design for huge structures containing liquid has been growing up. This study deals with the refinement of classical numerical approaches for the free vibration analysis of separated structure and liquid motions. According to the liquid-structure interaction, LNG-storage tanks exhibit two distinguished eigenmodes, the sloshing mode and the bulging mode. For the sloshing -mode analysis, we refine the classical rigid-tank model by reflecting the container flexibility. While, for the bulging-mode analysis, we refine the classical uncoupled structural vibration system by taking the liquid free-surface fluctuation into consideration. We first construct the refined dynamic models for both problems, and present the refined numerical procedures. Furthermore, in order for the efficient treatment of large-scale matrices, we employ the Lanczos iteration scheme and the frontal-solver for our test FEM program. With the developed program we carry out numerical experiments illustrating the theoretical results.

  • PDF

A Study on Safety Distance for Small Scale LNG Storage facility (소규모 LNG 저장시설의 안전거리 기준 연구)

  • Oh, Shin-Kyu;Jo, Young-Do
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.185-191
    • /
    • 2014
  • In this study safety distance was investigated for small-scale LNG storage facilities in order to provide basic data for safety. The results are as follows; (1) For explosion pressure criteria, current criteria are reasonable, but water spray system should be recommended to LNG storage tank to ensure safety. (2) For criteria based on the results of the quantitative risk assessment, criteria applied to people are $5kW/m^2$ for radiation, LFL for dispersion, and 7kPa for explosion pressure. And criteria applied to facility are $37.5kW/m^2$ for radiation and 20 kPa for explosion pressure.

The Analysis of Inground LNG Storage Tank Compression Ring Behavior during Concrete Pouring (콘크리트 타설에 따른 지하식 LNG 저장탱크 컴프레션 링 거동 분석)

  • Kim Y.K.;Kim J.H.;Yoon I.S.;Oh B.T.;Yang Y.M.
    • 한국가스학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.82-87
    • /
    • 2004
  • Compression ring is a part of LNG storage tank. The main function of the compression ring is connected the roof plate with concrete side wall. End of its one side is embedded in the side concrete wall and the other's connected with the roof plate by welding. It is designed to support stably for all the loads such as self weight of steel roof, inner pressure and concrete weight. We fulfill the FEM analysis to analysis the compression ring behavior during construction. Also we studied the effect of the change of design variables. On the basis of the results, we could introduce a more reasonable design method for compression ring.

  • PDF

Experimental Study of Impact Behaviors of the Membrane for LNG Storage Tank (LNG 저장탱크용 멤브레인의 충격거동에 관한 실험적 연구)

  • Kim, Young-Gyu;Kim, Chung-Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.68-74
    • /
    • 1995
  • This paper analyzes the behaviors of the membrane under drop impact loadings using the acoustic emission technique. The analysis is useful for evaluating the strength of the membrane as well as for studying its damping characterisics due to the corrugation and the ring knot. The membrane for LNG storage tank is basically composed linear and circular elements. Two membrane specimens have approximately same drop impact mass and same drop speed. Locan 320 system with piezoelectric sensor is used in the experimental measurement. Experimental results for the membranes indicated that AE siganls having higher energies were generated with increasing drop impact loadings. It was confirmed that the ring knot. membrane has high absorption of drop impact loadings in comparison with the flat membrane. These results are very important to reliable design and to improve the safey of the membrane components.

  • PDF

A Study on the Characteristics of the Work Safety Environment Sensing Module for LNG Storage Tanks (LNG 저장탱크용 작업안전 환경 센싱 모듈의 특성연구)

  • Park, Byong Jin;Kim, Min Sung
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.189-196
    • /
    • 2022
  • We have developed an embedded based environment sensing module with high-resolution temperature, humidity and gas sensors to detect gas leakage under the condition of LNG injection. The developed sensing module have linearity with gas concentration. We have confirmed the developed sensing module could detect LNG gas concentration of 5 cmol/mol and 15 cmol/mol, which are gas concentration at risk of explosion. The response time of the developed module was fast within 8 seconds. Therefore it can be used to detect LNG gas leakage.

The Analysis of Inground LNG Storage Tank Compression Ring Behavior during Concrete Pouring (콘크리트 타설에 따른 지하식 LNG 저장탱크 컴프레션링 거동 분석)

  • Kim Y.K.;Kim J.H.;Yoon I.S.;Oh B.T.;Yang Y.M.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.2 s.27
    • /
    • pp.16-21
    • /
    • 2005
  • Functions of the compression ring plate fixed at the concrete side wall are to connect and support the steel roof plate. It should be designed to endure stably all the loads such as weight of steel roof, inner pressure and concrete weight. Behavior of the compression ring during construction has been analyzed by the finite element method and real measured data. Additionally, on the basis of results from parametric study of design variables for the steel roof a more reasonable design method for the compression ring has been proposed.

  • PDF

A thermal stress and crack study by computer modelling (전산해석에 의한 온도응력 및 온도균열 검토)

  • 문수동;이상호;문한영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.375-380
    • /
    • 2002
  • Tong-young LNG tank is a LNG storage tank of 140,000 kl, and it is composed of Bottom Slab(Annular, Center), Outer Wall, Ring Beam and Roof. Generally, when concrete temperature arise, the complex thermal stress of inner and outer part can cause serious thermal crack and damage at structure. So in this paper, for the control of this thermal crack, we did the concrete mix design with the base of fly-ash 30% substitute at binder, and through the computer modelling at Bottom Slab(Annular, Center), Outer Wall, Ring Beam and Roof, we studied the probability of thermal crack by thermal crack index.

  • PDF