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Free Vibration Analysis of Aboveground LNG-Storage Tanks by

the Finite Element Method
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Recently, in proportion to the increase of earthquake occurrence-frequency and its strength
in the countries within the circum-pan Pacific earthquake belt, a concept of earthquake-proof
design for huge structures containing liquid has been growing up. This study deals with the
refinement of classical numerical approaches for the free vibration analysis of separated struc-
ture and liquid motions. According to the liquid-structure interaction, LNG-storage tanks
exhibit two distinguished eigenmodes, the sloshing mode and the bulging mode. For the sloshing
-mode analysis, we refine the classical rigid-tank model by reflecting the container flexibility.
While, for the bulging-mode analysis, we refine the classical uncoupled structural vibration
system by taking the liquid free-surface fluctuation into consideration. We first construct the
refined dynamic models for both problems, and present the refined numerical procedures.
Furthermore, in order for the efficient treatment of large-scale matrices, we employ the Lanczos
iteration scheme and the frontal-solver for our test FEM program. With the developed program
we carry out numerical experiments illustrating the theoretical results.

Key Words : LNG-Storage Tank, Fluid-Structure Interaction, Finite Element Analysis, Slosh-

ing Mode, Bulging Mode, Structure Deformation, LNG Free-Surface Fluctuation.

1. Introduction

As an uncontaminated fuel, the need of LNG
(Liquefied Natural Gas) has greatly grown up,
and accordingly its storage tanks are on the trend
of a large size. However, unexpected structural
failure of such huge structures by earthquakes
may result in not only severe environmental con-
tamination but also tremendous loss of human
and financial resources. In the countries within
the circum-pan Pacific earthquake belt, an earth-
quake-proof structural design is a matter of pri-
mary concern. In order for such an earthquake-
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proof design, accurate eigenmode analysis and
seismic analysis with reliable earthquake record
are of a great importance.

In the liquid-structure interaction system com-
posed of LNG container, relatively dense LNG
and other subsidiary components, the eigen-
behavior is characterized by the sloshing and
bulging modes. The former is called a displace-
ment-type eigenmode characterizing by the LNG
free-surface motion, while the latter is called an
acceleration-type eigenmode dominated by the
container deformation. According to a weak
dynamic coupling between two modes, analysts
used to separate the whole integrated dynamic
system into two uncoupled regions, a container
for the bulging mode and a liquid for the sloshing
mode.

Best to our memory, theoretical and experimen-
tal studies on the eigen behavior of liquid-storage
tanks were done by Haroun (1983, 1985 and
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1996) and Ohayon et al. (1995), and the finite
element analysis of eigenmodes of such tanks was
carried out by Okada et al. (1975), Tedesco et al.
(1989) and Khai (1993). In particular, Okada et
al. considered the entire dynamic system consist-
ing of LNG and shell-like container as a coupled
integration system for the finite element analysis.
As for the computation of equivalent mass added
to the structure, Gupta (1976), Rajasankar et al.
(1993) and Zienkiewicz et al. (1991) introduced
their numerical techniques. A recent study on the
added mass of viscous fluid-structure interaction
problems by Conca et al. (1997) is also worth to
mention.

These studies can be largely classified into two,
some for the coupled entire liquid-structure sys-
tem and others for the uncoupled structure and
liquid. In the former, the container flexibility as
well as the liquid free-surface fluctuation are
inherently reflected. But, in the latter, both inter-
ference effects have been neglected, owing to the
numerical difficulty and complexity.

This paper is concerned with the refinement of
the latter classical approaches. For this goal, we
refine the classical rigid-tank model, for the lig-
uid sloshing motion, by including the container
flexibility. As well as, we take the liquid free-
surface fluctuation into the added-mass compu-
tation, for the structure bulging motion. Through
the numerical experiments with a model LNG-
storage tank, we compute eigen frequencies and
modes by the refined procedures and carry out the
comparison of the refined methods with classical
approaches.

2. LNG-Storage Tanks and
Dynamic Modeling

2.1 LNG-storage tanks

Figure 1 shows a general aboveground LNG-
tank. A shell-like thin
manufactured by Ni-Cr steel is supported on the

storage structure
ferrite layer mounted on the concrete base. In
order to avoid its vertical and horizontal rigid
movement, it is jointed with pre-tensioned anchor
bolts positioned uniformly in the circumferential
direction. A shell-like container consists of four
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Fig. 1 A structure of above-ground LNG-stor-
age tank

parts, the base plate, the side shell, the upper
dome and the torus joining the side shell and the
upper dome. The relative thickness to the tank
radius of LNG-storage tanks in most engineering
applications is of 10~% order, so the container is
ultra-thin structure.

An exterior concrete wall is for the sake of
protecting the container from various kinds of
external attacks. The bottom ferrite layer inserted
between the base plate and the concrete base plays
a role of shock absorbing and insulation. The
other ferrite powder filled up between the exterior
concrete wall and the side shell is just for insula-
tion.

Here, we exclude the exterior concrete wall and
the side ferrite powder from the eigenmode analy-
sis because the dynamic-interaction effect on the
LNG-storage tank by those components is of
negligible amount. In addition, since we are inter-
ested in the horizontal eigen-characteristics, we
simplify the bottom ferrite layer as a rigid layer
such that the base plate of shell-like container is
constrained such that no relative dynamic motion
with respect to the concrete base is allowed.

2.2 Dynamic model for the bulging mode and
FE approximation

As mentioned before, in the bulging mode the

deformation of container is dominated while the

free-surface fluctuation of interior LNG is feeble.

Based on this weak coupling between the two

modes (Haroun 1983, Haroun et al. 1985), it has
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Fig. 2 Uniformaly arranged anchor bolts (91EA X
2°) and the cantilever beam model

been traditional to split a liquid-structure interac-
tion system into two equivalent uncoupled
dynamic systems for separate container and liquid
regions.

In order to construct a reliable uncoupled
dynamic model for the bulging mode under con-
sideration, computation of accurate equivalent
added-mass of LNG and equivalent spring con-
stants of anchor bolts is an important step. The
classical numerical technique to compute added-
mass corresponding to the hydrodynamic effect is
now well established. The reader may refer to
Rajasankar et al. (1993) and Zienkiewicz and
Taylor (1991). Here, we refine it by including the
LNG free-surface fluctuation.

Referring to Fig. 2, we simplify the anchor
bolts as a cantilever beam of circular section, to
which we apply the unit load method to obtain
the component-wise equivalent spring constants
k%, k¥ and kZ of the n-th anchor bolt given by
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Denoting the domain of shell-like container by
QLeN3, we write the dynamic equilibrium equa-
tions together with the essential and natural
boundary conditions (i, j, k=x, y, z and k; no
sum):

2
0 (w) — o a-=0, in ©

=0, on g8 2)
—oyyn;=p, on g8,
— oy =Kk§(¢n) Uy, ON R

where p denotes the density of the structure.
Furthermore, ¢;; and n indicate Cauchy stress-
tensor components and the outward unit vector
normal to the structure,
hydrodynamic pressure pL2(4%,) on the liquid
-structure interface g by interior LNG is trans-
formed into the equivalent mass added to the

respectively. The

structure, as described in Appendix I. The other
natural boundary condition is the dynamic spring
forces on {J Q% by anchor bolts.

In order to construct the corresponding var-
iational statement of the eigenvalue problem (2),
we first define the triple vector-valued function
space V() of admissible displacement fields

V(Q) ={ve[H'(Q)]%v=0 on 62} (3)
Treating the dynamic spring forces by anchor
bolts as point loads, we obtain the variational
form of the problem (2): Find {wEN, u(x)EV
(2)} such that VveV(Q),

[ oy ) dQ+ S [w kw1,
zwzj;pv.uld.Q—fag pv-nds 4

where {@, n (x)} denotes eigen sets corresponding
to the bulging mode.

Using three-dimensional isoparametric 20-
node cubic and 15-node tetrahedron elements, we
approximate the dynamic displacement fields:

u"=Nia )

by denoting N and @ as a matrix containing
corresponding finite-element basis functions {g,
(x) }i-, and the nodal vector, respectively. Corre-
sponding strain and stress tensors are written as

e(u") =DNua=Bi (6)
o(u") =EBa (7

with a (3x6) divergence-like operator D defining
Cauchy strain tensor and the (6x6) three-dimen-
sional linear-elastic material matrix E containing
Lame constants » and A.
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Substituting the finite element approximations
into the variational problem (4), we have the
general numerical eigenvalue problem:

[K—«*Ms]u=0 (8)

Here, two matrices are defined respectively as
K— [B'EB d2+ % (Nk.N), O)

Mb:[}pNTN dQ+ o (HR)'ST* (HR)
(10)

where k, denotes diag(ky, kj, ki) and p_ the
density of LNG. The RHS term in Eq. (10) is the
equivalent mass matrix of LNG added to the
structure. Its detailed numerical derivation is
given in Appendix A.l.

2.3 Dynamic model for the sloshing mode
and FE approximation

On the contrary to the bulging mode, in the
sloshing mode the free-surface fluctuation of
LNG prevails while the structure-deformation is
of negligible amount. And hence, it has been
conventional to assume it as a rigid-tank sloshing
(Haroun 1983). For the assessment on this classi-
cal model, Okada et al. (1975) and Khai (1993)
compared the eigen frequencies obtained by the
rigid-tank sloshing model and the coupled inte-
gration system. According to their results, it has
been found that the classical model is acceptable
for most engineering applications within the rela-
tive modeling error less than 1%. Differing from
them, we in this study directly refine the classical
model in order to account for the container
deformation and intend to examine the container-
deformation effect on the LNG sloshing mode.

Since our study aims at the horizontal eigen-
behavior, we consider a half of LNG region, as
depicted in Fig. 3, where boundary definition
together with corresponding boundary conditions
in terms of the velocity vectors, v of LNG and v,
of the structure, and the hydrodynamic pressure
are described. For the fluid motion, we assume
that the fluctuation of LNG is incompressible,
inviscid and irrotational (i. e. curl-free: VX v=
0). Then, for the free-surface vibration of ideal
flow, there exists a potential function ¢(x; t)

Symmetric Sur]
(v n.+ Liquid-Structure
Interface, 34,
((v—vg)* 0,=0)

Fig. 3 Boundary definition of the half of LNG
region

satisfying
plvixst)=Veo (11)

The behavior of free-surface vibration of ideal
flow is governed by Laplace equation from the
continuity equation

V+v=V? ¢=0, in (12)

and the corresponding boundary conditions
(Currie 1974)

Vo l'lL=“g;;:2§—t{a on 900k

Vo + no=vs * n., on 9
Ve + n.=0, on 9Qs and 98

Here, Q, &N and n, are the LNG domain and
the outward unit vector normal to its boundary
(i. e, np - n=—1) respectively.

Here, for our study, we record the fundamental
relations associated with the simple harmonic
motion. First, taking the spatial integration to the
Euler equation (Vp+ o.v=0), we have

p(x; t) =—pLdp (x; t) /4t in Q. (14)

Then, we can establish the alternative Helmholtz
equation and boundary conditions in terms of the
hydrodynamic pressure to Eqs. (12) and (13).
Second, using the fact of (7 =v,=V ¢+ n., p~the
sloshing height of the LNG free-surface) and the
corresponding boundary condition in Eq. (13),

(13)

we have the relation given by
—_log
=% ot " 08¢ (15)

Defining the space of admissible potential func-
V(Q.)=H'(LQ,) and applying the
boundary conditions specified in Eq. (13), we

tions as
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obtain the variational form of the eigen-behavior
of the free-surface vibration problem (12): Find
{wEN, ¢(x) =V (Q)} such that

/QLVX Ve d“Q_/aQ, x2(vs * mi)ds

2
=L [ xeds, VxEV (@) (16)

The above formulation involves the liquid-struc-
ture coupling, the second term in the LHS, but
which vanishes when we assume the rigid-tank
sloshing.

With the same finite elements used for the
bulging mode, we construct the finite element
approximations of potential functions and normal
velocities 11, of the structure as follows

P"=0p, tn=—(us * ) "=Qii,  (17)
where @ is a matrix containing finite-element
basis functions.

Splitting the global finite-element nodes into
those on the free-surface (denoted by F) and the
rest (denoted by R) and enlarging H matrix such
that the nodal vector i{i, on g, can be extended
to whole nodes in Q,, we have

(B -
Krr Ksr 0 01 (g
Hsr HFR] {ﬁﬁ}
=— 18
I:HRF HRR ﬁg ( )
where each matrix is defined as
1
M= gJ e

— T

070 ds, K=/ VO -V dQ,
QL

The detailed numerical derivation on correlating
the normal velocity with the potential function is
described in Appendix A.2. Along the procedure
in Appendix A.2 for transforming the dynamic
effect of the container deformation into the equiv-
alent mass matrix for the bulging mode, we finally
arrive at

{[KFF KFR]_(UZ[M'J:IVIFF I\:IIFR:”{ ?F}:{O} (20)

KRF KRR MRR MRR PR 0

We note that the equivalent mass is also fre-
quency dependent, as described in Eq. (A15).

3. Iterative Numerical Algorithm

For relatively small-size matrices of [K] and
[M], one can obtain eigen sets {w, @} by direct
methods such as the inverse or the forward itera-
tion techniques. But, in most engineering prob-
lems, these two matrices are large-scale so that it
may beyond the limit of computation capability
to handle whole array elements.

Fortunately, in many cases of structural vibra-
tion analysis, several lowest eigen sets are enough
for the acceptable dynamic behavior of the prob-
lem under consideration, and hence rapid and
efficient numerical algorithms such as the Lanc-
zos iteration method, the subspace method and so
on are widely used. To implement our theoretical
results, we develop a test FEM program equipped
with the iterative numerical algorithm utilizing
the Lanczos method, the frontal solver and the
mass-lumping technique.

As is well known, the Lanczos iteration method
transforms the full (NXxN) eigen-matrix system
(Ku=@’Mu) to the truncated (nxn) system (n
<N)

Tui=—7ii @1)
w
where, the truncation operator T, is constructed
with {a, B} that are iteratively computed, as
shown in the flowchart. The truncated eigen-sys-
tem (21) is of relatively small size so that one can
easily obtain corresponding eigen-sets with usual
direct methods. Since the reader is familiar with
such numerical techniques, we leave the detailed
description to the reference (Bathe 1996).
Referring to the flowchart, in order to compute
%; and {am, B} using the Lanczos method, we still
need full stiffness and mass matrices. In order to
avoid the need of large-scale storage, we utilize
the frontal solver and the mass-lumping tech-
nique, as depicted in Fig. 4. The mass matrix
becomes a diagonal matrix by means of the mass
-lumping technique, and hence its global storage
is reduced to N. Then, the computation of

x,=diag (M) x, (22)

at each Lanczos iteration can be carried out by
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Table 1 Numerical data for the simulation

Material data Geometry data (cm)
Density (kgf-sec?/cm?), o 2.67(x 107°) | Container radius, R 2500
Ni-Cr Container height, H 3975.5
Young’s modulus (kgf/cm?), E 7.0(x 10%)
Steel Side-shell thickness 5.15-1.65
Poisson’s ratio, y 0.3 Dome/torus thickness 1.65
LNG height, Hyyc 3000
Density B Anchor bolt diameter, d 3.6
LNG s 4.6(x1077)
(kgf-sec’/cm?*), o Anchor bolt length, L 300
Angle, g 15°
1, the interior LNG is filled up to the height of
H, e, and the container and the anchor bolts are
starting vector : X manufactured by Ni-Cr steel. The side-shell
(| x=xiy, y-paeom] . . . .
I thickness varies continuously along the z-axis
KT, =disgM 5, F'°'”;f’;°"’°’ ranging from 5.15cm at the bottom to 1.65cm at
i . .
L | = Ndeg(My, the other end. Table 1 contains the material
Trang?grzrg:tlon RTEn R i f Ni-C 1 and LNG and
P properties of Ni-Cr steel an and represen-
T =% /B; tative geometry data of the model LNG-storage
1 tank.
\ Tmmﬁzd_s’i'swm Referring to Figs. 8 and 9, we generate finite

acobi method : o ¥
u=fy, ., x]i

END’

Fig. 4 Flowchart for iterative numerical algorithm
employed in the test FEM program

the usual frontal solver because the RHS in Eq.
(22) is simplified to an element-wise load vector.

4. Numerical Results

For the numerical simulation of eigen-charac-
teristics of LNG storage tanks, we develop a test
FEM program equipped with the pre-mentioned
iterative numerical algorithm. In order to visual-
ize the numerical results and the geometry of
LNG-storage tanks, we utilize the pre- and post
-processing modules of the commercial ANSYS
software.

For the numerical experiments, we consider a
closed-type aboveground LNG-storage tank
capable of storing 6000k/ LNG. Referring to Fig.

element meshes for the container and the interior
LNG using three-dimensional quadratic ele-
ments. We made the same finite-element partition
on the common liquid-structure interfaces so that
the numerical treatment for converting the
hydrodynamic pressure to the added-mass for the
bulging mode and reflecting the shell deformation

in the sloshing mode is easily carried out.

4.1 Results of the bulging mode

According to the numerical procedure de-
scribed in this paper, we calculate the added-mass
matrices. However, since it requires natural fre-
quencies a priori, as described in Appendix A.l,
we apply the sort of predictor and corrector
method. In other words, we first simulate the
bulging mode without the free-surface fluctua-
tion, in which the added-mass is frequency~in-
dependent, and next we obtain the added-mass
matrix and natural frequency corresponding to
each of the pre-computed natural frequencies for
the case without free-surface fluctuation.

Figure 5 shows the variations of total added-
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Fig. 5 Variations of the calculated total added-mass
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mass with respect to the natural frequency. When
the free-surface fluctuation is neglected, 61.7% of
the total LNG mass is added to the structure. On
the other hand, the total added-mass when the
free-surface sloshing is included varies along the
natural frequency, while it approaches that of the
case without the free-surface fluctuation. For a
reference, it drops to 60.9% of the total LNG mass
at the lowest natural frequency, and which is
relatively 1.3% smaller than the case without the
free-surface fluctuation.

Next, we examine the distributions of nodal
added masses on the side~shell interface. Accord-
ing to our assumption of ideal fluid-flow, the
added-mass component m, identically vanishes
on that surface. For the spatial distribution, we
diagonalize the added-mass matrix and assume
each diagonal value as the lumped mass at the
corresponding finite-element node. Since we uni-
formly partitioned the liquid-structure interface
along the axial and the circumferential directions,
respectively, this assignment makes sense.

Figure 6 presents respectively the vertical and
the sectional distributions of nodal added-mass
components, where the case with sloshing corre-
sponds to the distributions obtained by including
the free-surface fluctuation with the lowest natu-
ral frequency. From the vertical distributions
shown in Fig. 6(a), we see that the case with the
free-surface sloshing has non-zero added-mass at
the free surface. This implies that the correspond-
ing hydrodynamic pressure at that surface is not
zero, as given in Eqs. (14) and (15). On the other
hand, the x-component exhibits cosine-type sec-

ﬁ —a&— With sloshing
—A

3000 - W/o sloshing
2500
2000
1500 -
1000
500 4

sa

0 > X
My

(a) Vertical distributions (m, at 0°)

i
!
i

(b) XY-sectional distributions

Fig. 6 Vertical and sectional distributions of the
computed nodal masses

tional distribution while the y-component shows
sine-type sectional distribution.

With the computed added-mass matrices for
both cases with and without the free-surface
sloshing (fluctuation), we calculate natural fre-
quencies up to forty natural modes (to retain
numerical errors in the considering lowest
modes) by the iterative numerical algorithm

presented in Fig. 4. In order to examine the effect

_of the suitability of added mass, we consider two

additional mass-adding cases. For the method I,
we add the same 61.7% of the total LNG-mass as
the classical method such that the added-mass
components have cosine- and sine-type distribu-
tions shown in Fig. 6(b) along the circumferen-
tial direction but the uniform distribution in the
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Table 2 The computed lowest natural frequencies (rad/sec) of bulging mode
Present method Rough analysis
Mode
With sloshing W /o sloshing Method | Method [
7.82046 9.43351 10.53539
Ist 7.99407
(-2.172 %) (18.007 %) (31.790 %)
12.82327 15.76890 17.63313
2nd 1291134
(-0.682 %) (22.132 %) (36.571 %)
3ed 16.47090 16.39349 20.16092 22.56515
I’ .
(-0.470 %) (22.403 %) (37.000 %)
ath 17.84708 17.77147 22.03941 24.44500
' (-0.424 %) (23.490 %) (36.969 %)
" . particularly by method II. This is solely owing to
. the unsuitability of the spatial distribution of
22 4 x . N
added mass. The higher values in natural fre-
7 20 . .
quencies are because the added-mass amount
gw- x ' unaffecting the bulging mode is involved in the
%"" . * uniform spatial added-mass distributions.
] 44 . Fig. 8 shows the mode-shapes corresponding to
512- T four lowest natural frequencies obtained by the
10+ . A i I present method with the liquid free-surface slosh-
84 : *  rough method Il ing.
: ; . 7 :
mode 4.2 Results of the sloshing mode

Fig. 7 Comparison of natural frequencies obtained
by the four different mass-adding methods

axial direction. While, for the method II, the same
amount of LNG-mass but with the uniform distri-
bution along the axial and the circumferential
directions is added.

Table 2 contains the computed results of four
lowest natural frequencies for the four different
mass-adding approaches, where the relative varia-
tions are calculated with respect to the case with
the liquid free-surface sloshing. Due to the rela-
tively bigger amount in total added mass, the case
without sloshing produces relatively lower natu-
ral frequencies compared to the case with slosh-
ing. However, the difference between both cases is
not considerable and furthermore it monotonical-
ly decreases as the natural frequency goes up. On
the other hand, the numerical results obtained by
the other two approaches are significantly higher
compared the values by the present methods,

With the developed test FEM program accord-
ing to the theoretical and numerical results de-
scribed in this paper, we carry out the numerical
simulation for the sloshing mode with the uni-
formly partitioned finite-element mesh. We com-
pute the same number of natural frequencies as
the bulging mode, and we compare the numerical
results obtained by the rigid-tank and the flexible
-tank models.

Table 3 contains the comparative numerical
results of four lowest natural frequencies of the
both cases. Since the container-deformation
becomes smaller as the natural frequency goes
lower, as mentioned earlier, the difference in both
cases significantly decreases in proportion to the
decrease in the natural frequency. For our model
problem, the relative difference with respect to the
rigid tank is far less than 1%, up to the fourth
eigenmode. The mode-shapes corresponding to
four lowest natural frequencies of the horizontal
sloshing eigen-behavior are depicted in Fig. 9.
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Fig. 8 Bulging mode shapes of four lowest natural frequencies in the structure motion

Table 3 Computed lowest natural frequencies
(rad/sec)
Mode Rigid Flexible Relative
tank tank difference
1 0.82727 0.82727 0%
2 1.38023 1.38023 0%
3 1.68254 1.68464 0.125%
4 1.84968 1.85340 0.201 %

As one can infer from the derivation process of
Appendix A.2, the effect of container-deforma-
tion on the sloshing mode has different degrees of
intensity for different material, geometry data and
boundary conditions
From the qualitative point of view, the relative
contribution of added-mass by the container
-deformation is closely proportional to the rela-

of liquid-storage tank.

tive flexibility of the container to the interior
liquid.

(b) Second mode

(d) Fourth mode

5. Conclusions

This paper addresses the study on finite element
analysis of the horizontal eigen-behavior of LNG
-storage tanks equipped with tightening anchor
bolts. We first constructed two separate eigen
problems for the bulging mode and the sloshing
mode, respectively. In order to assure the model-
ing quality for the LNG-structure hydrodynamic
interaction, we particularly took into considera-
tion of the container-deformation in the bulging
mode and the LNG free-surface fluctuation in the
added-mass computation.

On the other hand, for the numerical experi-
ments we developed a test FEM program accord-
ing to our theoretical results, in which we
introduced an iteration algorithm utilizing the
Lanczos technique and the frontal solver for an
efficient treatment of inherent large-scale
matrices.

According to the refinement of classical sim-
plified models for both eigen modes by including

the two neglected effects, we found that both



642 Jin-Rae .Cho, Jin-Kyu Lee, Jeong- Mok Song, Suk-Ho Park and Joong-Nam Lee

(¢) Third mode

(d) Fourth mode

Fig. 9 Sloshing mode shapes of four lowest natural frequencies in the LNG motion.

bulging and sloshing modes become frequency
-dependent eigen problems. In order to compute
frequency-dependent eigen frequencies and
modes of the sloshing mode, we employed a sort
of predictor and corrector numerical technique.

For the bulging mode, we first computed added
-mass matrix and analyzed its frequecy-wise
variation and spatial distributions for the cases
with and without the LNG free-surface fluctua-
tion. We observed that the difference in added
masses between both cases is remarkable at the
LNG free surface and in lower natural frequency
range. And the refined model produced the rela-
tively smaller total added masses and accordingly
relatively higher eigen frequencies, when compar-
ed to the classical model.

With the four different spatial added-mass
distributions, we carried out the comparative
numerical experiments. Compared to the present
method described in this paper, the two rough
methods produced eigen frequencies with consid-
erable error, owing to the inappropriate spatial
distribution of added mass, even though the same

total amount of mass was added. On the other
hand, the effect of LNG free-surface fluctuation
on the bulging mode diminished as the natural
frequency becomes higher.

From the numerical results of the sloshing
mode, we observed that the difference in eigen
frequencies between the classical rigid-tank
model and the present flexible-tank model pre-
vails in proportion to the decrease of frequency.
This frequency variation is reverse to that of the
bulging mode, however it is consistent well with
the physical interpretation. That is, the container
~deformation prevails while the LNG free-sur-
face fluctuation diminishes, as the natural fre-

quency becomes higher.
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Appendix

A.1 Equivalent added-mass of LNG

Taking a time derivative to Eq. (18) together
with the fundamental relation given in Eq. (14)
leads to the alternative system of equations

(K—«*M)p=p. Hiln

Denoting (K— @ M) by S(w) and splitting the
global finite-element nodes into those (denoted
by I) on the liquid-structure interface 9¢2; and the
rest (denoted by R), we have

[Sn SlR]{ﬁI}=p [H 0]{l:1n}
Sw Seed e/ L0 0100

Applying the static condensation, we obtain the
relation at the interface between the

hydrodynamic pressure and the normal dynamic
acceleration of the structure given by

Pr=0.[S1— S1zSraSki] _lHl:an pLSI_IHﬁn (A3)

(Al)

(A2)

Next, we define the coordinate transformation
operator R which transforms a vector in Car-
tesian coordinate into the normal component to

the structure interface such that
R:ueN®-> u,eN RR"=1 (A4)

Then, the finite element approximation of the
second term in the RHS of Eq. (4) indicating the
virtual work by the hydrodynamic pressure leads
to:

[ vt ds= [ [0®RNI[0(aST'H
(R))]ds
— &) [, 0070 ds}[s7 (HR)E]

=o ¥ (R"H) ST (HR) (AS)
=—o* V' [ (HR)'ST' (HR) J@



644 Jin-Rae Cho, Jin-Kyu Lee, Jeong- Mok

Here, @ 1is the finite-element basis-matrix
introduced in Eq. (17) and H the symmetric
matrix defined in Eq. (19), respectively. The term
[+] in the last line in above equation is the
frequency-dependent added-mass matrix Maaq
added to the structure.

From the definition of added-mass matrices
and the fact of (plag,=p.g7) by relating Eq. (14)
with Eq. (15), the frequency-dependent term
«*Mp in Eq. (Al) can be converted to the fol-
lowing expressing the effect of the LNG free-

surface sloshing

(A6)
Therefore, the frequency-dependence of added-
mass weakens as the natural frequency becomes
higher because the free-surface fluctuation height
7 significantly diminishes in proportion to the
increase of frequency.

oL8w*M7

A.2 Effect of the structure-deformation

Returning to the variational form (4), we re-
write the virtual work done by the hydrodynamic
pressure as

. = T A7
PV ds /aglv p ds (A7)

with p in Cartesian coordinates and we approxi-
mate this vector using the basis matrix defined in
Eq. (5) such that

(A8)

Then, the finite element approximation of the

p"=Np

problem (4) results in
[K—o*M]i=—Gp: (A9)
with the stiffness matrix K by the container and

anchor bolts and M indicating the first term in the
RHS of Eq. (10) together with G defined as

Song, Suk-Ho Park and Joong-Nam Lee

. T
G-—faglN N ds (A10)

By applying the mass-lumping technique and
splitting the global finite element nodes over the
entire container domain { into those (denoted by
I) on the liquid-structure interface and the rest
(denoted by S), we have

[Kn — o*My Kis ]{1_11}
Kq Kss— CUZMSS Us
G 07(p:
- All
(o oJ{0) (AD)
After the static condensation, we have
=~ [ (Ku— o*Mun)
— Kis (Kss— 0*Mss) "'Ksi] "G
=Q(w) P (Al2)

Transforming two nodal vectors @; and p, expres-
sed in Cartesian coordinates into normal nodal
vectors using the operator defined in Eq. (A4),
we have together with the relation (14)

i,=—oR'Q(w)R & (A13)
Next, we define a matrix operator (composed
of 0 and 1) extending a nodal vector confined
within the liquid-structure interface to one
containing entire finite-element nodes in the lig-
uid domain such that, for any matrix multiplied
to ijoa
D : Aiioe.— ADu

Taking time derivative to Eq. (Al3) together
with the extension operator D', we obtain

2 (A14)

{2§}=mw2(RD) "Q(RD) { ;:} (A15)

Then, it is not hard to arrive at Eq. (20) by
substituting Eq. (A15) into Eq. (18).



