• Title/Summary/Keyword: LNG power plant

Search Result 73, Processing Time 0.018 seconds

Planning research for Floating Power Plant by modifying LNG carriers (LNG선 개조 발전플랜트 기획연구)

  • Lee, Kangki;Bae, Jaeryu;Shin, Jaewoong;Park, Jongbok
    • Plant Journal
    • /
    • v.16 no.3
    • /
    • pp.37-41
    • /
    • 2020
  • Lately old LNG carriers increased and ship price is getting down. So Interest for reuse and modification of used LNG carriers is growing. Also the needs for replacement of old power plant is increasing. Additionally eco friendly fuel such as LNG become attractive. Consequently gas power plant is getting much more popular than before. So in this research planning, we consider the floating power plant by modifying LNG carriers. This plant has the various function including storage, power plant and bunkering fuction etc. Through this multifunctional plant, we are ready for the old power plant shutdown and energy crisis in the future when we can supply the urgent mobile floating power plant quickly in time.

A Study on Environmental and Economic Cost Analysis of Coal Thermal Power Plant Comparing to LNG Combined Power Plant (석탄화력발전대비 LNG복합화력발전 환경성 및 경제성 비용분석에 관한 연구)

  • Kim, Jong-Won
    • Asia-Pacific Journal of Business
    • /
    • v.9 no.4
    • /
    • pp.67-84
    • /
    • 2018
  • This study is about comparing coal thermal plant to LNG combined power plant in respect of environmental and economic cost analysis. In addition sensitive analysis of power cost and discount rate is conducted to compare the result of change in endogenous and exogenous variable. For environmental assessment, when they generate 10,669GWh yearly, coal thermal power plant emits sulfur oxides 959ton, nitrogen oxide 690ton, particulate matter 168ton and LNG combined power plant emits only nitrogen oxide 886ton respectively every year. Regarding economic cost analysis on both power plants during persisting period 30 years, coal thermal power plant is more cost effective 4,751 billion won than LNG combined taking in account the initial, operational, energy and environmental cost at 10,669GWh yearly in spite of only LNG combined power plant's energy cost higher than coal thermal. In case of sensitive analysis of power cost and discount rate, as 1% rise or drop in power cost, the total cost of coal thermal power plant increases or decreases 81 billion won and LNG combined 157 billion won up or down respectively. When discount rate 1% higher, the cost of coal thermal and LNG combined power plant decrease 498 billion won and 539 billion won for each. When discount rate 1% lower, the cost of both power plant increase 539 billion won and 837 billion won. With comparing each result of change in power cost and discount rate, as discount rate is weigher than power cost, which means most influential variable of power plan is discount rate one of exogenous variables not endogenous.

Process Simulation of the BOG Re-Liquefaction system for a Floating LNG Power Plant using Commercial Process Simulation Program (상용 공정시뮬레이션 프로그램을 이용한 부유식 LNG 발전설비의 BOG 회수시스템 공정모사)

  • Seo, Ju-Wan;Yoo, Seung-Yeol;Lee, Jae-Chul;Kim, Young-Hun;Lee, Soon-Sup
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.732-741
    • /
    • 2020
  • Environmental regulations have recently been strengthened. Consequently, floating LNG(Liquefied Natural Gas) power plants are being developed, which are new power generation plants that generate electricity by utilizing LNG. A floating LNG power plant generates BOG(Boil-Off Gas) during its operation, and the system design of such a plant should be capable of removing or re-liquefying BOG. However, the design of an offshore plant differs according to the marine requirements. Hence, a process simulation model of the BOG re-liquefaction system is needed, which can be continuously modified to avoid designing the floating LNG power plant through trial and error. In this paper, to develop a model appropriate for the floating LNG power plant, a commercial process simulation program was employed. Depending on the presence of refrigerants, various BOG re-liquefaction systems were modeled for comparing and analyzing the re-liquefaction rates and liquid points of BOG. Consequently, the BOG re-liquefaction system model incorporating nitrogen refrigerants is proposed as the re-liquefaction system model for the floating LNG power plant.

On the Social Acceptance of Site Selection for a LNG Power Plant (LNG발전소 입지선정에 관한 주민 수용성 제고연구)

  • Park, Dongkyu;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.18 no.3
    • /
    • pp.41-51
    • /
    • 2022
  • Recently, LNG power plants are increasing drastically and the desire of an improvement in the quality of life is growing. The delay of power plant construction can hinder the stability of power supply and increase the cost. So this study was conducted to help power plant construction progressing from now on by studying on the social acceptance of a LNG power plant. On this study I limited the scope of the study to the stage of Site Selection which is the most conflict stage and can interrupt the project. To conduct this study I researched the recently constructed power plants which have been delayed, in particular Eumseong Natural Power Plant and Daegu LNG Power Plant which are under bitter conflicts with local residents and have difficulty in construction progressing. So I found out that it is very important to collect the opinions of the residents in the stage of Site Selection and it is necessary to change ACT ON ASSISTANCE TO ELECTRIC POWER PLANTS- NEIGHBORING AREAS. Lastly it is very important to adapt the state-of-the-art facilities to increase the social acceptance of a LNG power plant.

  • PDF

A Study on the Economic Analysis of LNG Combined Cycle Thermal Power Plant in Cost Based Pool Electricity Markets (변동비반영 발전경쟁시장에서 LNG-복합 화력발전소의 경제성 분석에 관한 연구)

  • Lee, Cheon-Ho;Han, Seok-Man;Chung, Koo-Hyung;Kang, Dong-Ju;Kim, Bal-Ho H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1327-1333
    • /
    • 2008
  • Since Cost Based Pool markets has been continued to power markets, Genco. needs economic analysis about investment in power plants. Particularly most Private Genco.s have presently a construction plan about LNG combined cycle thermal power plants. In this paper, we propose a economic analysis method of LNG combined cycle thermal power plants using Economic Dispatch and Optimal Power Flow in CBP markets. Also we develope computation model using it for decision making to build a plant. This method can consider a variation of power facility like power plants and transmission lines in CBP markets. Finally, this dissertation provides a relevant case study to confirm the effect of cost factor to economical efficiency.

Establishment of Construction Procedure on the Off Shore Piping Work of a LNG Unloading Project (LNG 하역 플랜트의 Off Shore 배관시공절차 확립에 관한 연구)

  • Kim, Yong-Tan;Moon, Seung-Jae;Yoo, Hoseon
    • Plant Journal
    • /
    • v.5 no.4
    • /
    • pp.80-85
    • /
    • 2009
  • LNG stevedoring plant offshore pipelines requires human power and the longest construction period in constructing LNG storing terminal and influences on the success of the project absolutely. In this paper, the constructing procedures of LNG stevedoring plant offshore pipeline was established. Establishment of constructing procedures of LNG stevedoring plant offshore pipeline includes procurement of main equipments, iron frame and pipelines. To predict any expectable problems, that may occur by the stage of construction the application to the field works with a base of theoretical and practical contents for the constructing procedures of LNG stevedoring plant offshore pipelines can be established.

  • PDF

Calculation of Breakeven Point for LNG-Heavy Oil Transfer of D Thermal Power Plant Considering $CO_2$ Emission Cost ($CO_2$ 배출비용을 감안한 D 발전소의 LNG-중유 연료교제 손익분기점 계산)

  • Jeong, Yeong-Ho;Lee, Sang-Joong;Lee, Gene-Kyu;Yang, Seong-Deog
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.65-67
    • /
    • 2008
  • Kyoto Protocol against global warming came into effect in Feb 2005. This paper presents a calculation $CO_2$ emission of D power plant for combusting LNG and heavy oil using the a, b, c coefficients obtained by the performance test. The authors also calculate the breakeven point of the fuel transfer from LNG to Oil considering recent $CO_2$ emission cost.

  • PDF

Economic Analysis on Repowering Plans for a Outworn Anthracite Power Plant (노후 무연탄발전소의 리파워링 방안에 대한 경제성 분석)

  • Kim, Su-Man;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.9 no.1
    • /
    • pp.36-42
    • /
    • 2013
  • In this study, repowering scenarios are analyzed and evaluated from the economical point of view on a case by case basis. Based on the result of evaluation, the IRR indicates 2.34% on single 750 MW LNG combined cycle unit, 3.56% on 500 MW sub-bituminous PC units and 2.31% on 200 MW circulating fluidized bed combustion units, resulting in not reaching 7% rate of discount rate and being concluded uneconomical. However, proposes that it is most economical and feasible to repower power plant into 750 MW LNG combined cycle unit as long as the economic feasibility can be improved and it is necessary for old anthracite power plant to be repowered than rebuilt under the circumstances of lacking power supply.

  • PDF

Impacts of Energy Tax Reform on Electricity Prices and Tax Revenues by Power System Simulation (전력계통 모의를 통한 에너지세제 개편의 전력가격 및 조세수입에 대한 영향 연구)

  • Kim, Yoon Kyung;Park, Kwang Soo;Cho, Sungjin
    • Environmental and Resource Economics Review
    • /
    • v.24 no.3
    • /
    • pp.573-605
    • /
    • 2015
  • This study proposed scenarios of tax reform regarding taxation on bituminous coal for power generation since July 2015 and July 2014, estimated its impact on SMP, settlement price, tax revenue from year 2015 to year 2029. These scenarios are compared with those of the standard scenario. To estimate them, the power system simulation was performed based on the government plan, such as demand supply program and the customized model to fit Korea's power system and operation. Imposing a tax on bituminous coal for power generation while maintaining tax neutrality reducing tax rate on LNG, the short-term SMP is lowered than the one of the standard scenario. Because the cost of nuclear power generation is still smaller than costs of other power generation, and the nuclear power generation rarely determines SMPs, the taxation impact on SMP is almost nonexistent. Thus it is difficult to slow down the electrification of energy consumption due to taxation of power plant bituminous coal in the short term, if SMP and settlement price is closely related. However, in the mid or long term, if the capacity of coal power plant is to be big enough, the taxation of power plant bituminous coal will increase SMP. Therefore, if the tax reform is made to impose on power plant bituminous coal in the short term, and if the tax rate on LNG is to be revised after implementing big enough new power plants using bituminous coal, the energy demand would be reduced by increasing electric charges through energy tax reform. Both imposing a tax on power plant bituminous coal and reducing tax rate on LNG increase settlement price, higher than the one of the standard scenario. In the mid or long term, the utilization of LNG complex power plants would be lower due to an expansion of generating plants, and thus, the tax rate on LNG would not affect on settlement price. Unlike to the impact on SMP, the taxation on nuclear power plants has increased settlement price due to the impact of settlement adjustment factor. The net impact of energy taxation will depend upon the level of offset between settlement price decrease by the expansion of energy supply and settlement price increase by imposing a tax on energy. Among taxable items, the tax on nuclear power plants will increase the most of additional tax revenue. Considering tax revenues in accordance with energy tax scenarios, the higher the tax rate on bituminous coal and nuclear power, the bigger the tax revenues.