• Title/Summary/Keyword: LNG Storage Tank

Search Result 211, Processing Time 0.027 seconds

Numerical Study on the Leakage Safety of the Membrane LNG Tank Wall (멤브레인식 LNG 탱크벽체의 누설안전에 관한 수치해석적 연구)

  • Kim, Chung-Kyun;Shim, Jong-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.14-20
    • /
    • 2008
  • In this numerical study, the leakage safety of the LNG tank in which is constructed by membrane inner tank-plywood-polyurethane form-plywood-prestressed concrete structures has been presented for four leakage analysis models. The LNG leak criterion of the tank wall with a storage capacity of $200,000\;m^3$ is analyzed based on the thermal resistance technique. This means that if the cryogenic temperature of a leaked LNG is detected at the outer side of the PC wall, it may be leaked through the wall thickness of the tank. The calculated results based on the thermal resistance method between two walls show that the plywood, PUF, and another plywood walls may block the leakage of the leaked LNG even though the strength of these walls is already collapsed by a leaked LNG pressure. But, the leaked LNG may pass the thickness of the prestressed concrete wall for a period of elapsed time even though the PC outer tank supports the leaked LNG pressure. Thus, the PC outer tank may extend the leakage time of a leaked LNG.

  • PDF

Prestressing Effect of LNG Storage Tank with 2,400 MPa High-Strength Strands (2,400 MPa급 고강도 강연선이 적용된 LNG 저장탱크의 프리스트레싱 효과)

  • Jeon, Se-Jin;Seo, Hae-Keun;Yang, Jun-Mo;Youn, Seok-Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.999-1010
    • /
    • 2016
  • High-strength strands have been increasingly applied to recent actual structures in Korea. Structural effect of the increased spacing of sheaths was investigated in this study when the usual 1,860 MPa strands of an LNG storage tank are replaced with 2,400 MPa high-strength strands. First, finite element models of a cylindrical wall of an LNG tank were established and prestressing effect of the circumferential and vertical tendons was considered as equivalent loads. As a result of varying the tendon spacing and prestressing force with the total prestressing effect kept the same, the stress distribution required in design was obtained with the high-strength strands. Also, a full-scale specimen that corresponds to a part of an LNG tank wall was fabricated with 31 high-strength strands with 15.2 mm diameter inserted in each of two sheaths. It was observed that such a high level of prestressing force can be properly transferred to concrete. Moreover, an LNG tank with the world's largest 270,000 kl capacity was modeled and the prestressing effect of high-strength strands was compared with that of normal strands. The watertightness specifications such as residual compressive stress and residual compression zone were also ensured in case of leakage accident. The results of this study can be effectively used when the 2,400 MPa high-strength strands are applied to actual LNG tanks.

Study on the Lowest Cost Analysis of Steel Plates for Stiffener Installed on the Side Wall of LNG Tank (LNG내부탱크 Stiffener 판재 비용의 최소화 분석 연구)

  • Yun, Sang-Kook
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.81-86
    • /
    • 2014
  • The analysis of the cost optimization and the total demand weight of 9% Ni-steel plates for installing shell stiffeners in the side wall of the large capacity LNG storage tank are carried out in order to reduce the costs of the plates for stiffeners. This study can be possible for developing the calculation program which evaluates the bill-of-material for stiffeners to reduce the manual calculation time of tank designer, and to enable the estimation of weight and cost for various plate width. The results show that the demand weight and cost are reduced as the plate width is wider. Nevertheless, both the weight and the cost with plate width for stiffeners should be compared and evaluated to obtain the optimum cost time to time because of various cost incremental factors of plates such as transportation and handling cost, etc.

Design concept investigation for corner protection of LNG storage tank by ASME section VIII, Div. 2 (ASME section VIII div. 2에 따른 LNG저장탱크 코너프로텍션의 설계개념 고찰)

  • Kim Hyoungsik;Hong Seongho;Seo Heungseok;Yang Youngchul
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.3 s.15
    • /
    • pp.73-79
    • /
    • 2001
  • The corner protection which is consist of insulation and $9\%$ nickel liner is designed to mitigate the high hoop tension at the corner of LNG storage tank by LNG leakage. So the design loads depend on thermal and liquid pressure from leaked LNG In this paper design conditions are suggested as operating, major and minor leak conditions. And in order to check integrity of comer protection for the design conditions by appendix 4 in ASME section VIII div.2, acceptability checking process that have stress categorization and finite element analysis is explained.

  • PDF

Prediction of Fatigue Life for a 270,000 kl LNG Storage Tank According to Shape of Corner-protection Knuckle (너클 형상에 따른 LNG 저장탱크 코너프로텍션 피로수명 예측)

  • Lee, Seung Rim;Lee, Kyong Min;Kim, Han Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.69-72
    • /
    • 2014
  • If LNG is leaked from 9% Ni steel inner tank by damage, LNG is retained by outer concrete tank. Then large tensile stress can be caused at cylindrical bottom of outer tank by temperature difference between outer and inner surface of outer tank. Therefore, in order to reduce the tensile stress is caused by temperature difference, corner-protection is installed with insulation and 9% Ni steel as a second barrier. In this paper, using finite element method, structural analysis was performed for rectangular and circular shape of knuckle and based on the results, fatigue life of welds of corner protection was predicted. As a consequence of structural analysis, safety factor of circular knuckle shows 33% bigger than rectangular one shows, and circular knuckle has 25% bigger fatigue life time than rectangle has. These results can be applied to life time assessment and design optimization in the future.

Seismic Soil-Structure Interaction Analyses of LNG Storage Tanks Depending on Foundation Type (기초 형식에 따른 LNG 저장탱크의 지반-구조물 상호작용을 고려한 지진응답 분석)

  • Son, Il-Min;Kim, Jae-Min;Lee, Changho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.155-164
    • /
    • 2019
  • In this study, the soil-structure interaction(SSI) effect on the seismic response of LNG storage tanks was investigated according to the type of foundation. For this purpose, a typical of LNG storage tank with a diameter of 71m, which is constructed on a 30m thick clay layer over bedrock was selected, and nonlinearity of the soil was taken into account by the equivalent linearization method. Four different types of foundations including shallow foundation, piled raft foundation, and pile foundations(surface and floating types) were considered. In addition, the effect of soil compaction in group piles on seismic response of the tank was investigated. The KIESSI-3D, which is a SSI analysis package in the frequency domain, was used for the SSI analysis. Stresses in the outer tank, and base shear and overturning moment in the inner tank were calculated. From the comparisons, the following conclusions could be made: (1) Conventional fixed base seismic responses of outer tank and inner tank can be much larger than those of considering the SSI effect; (2) The influence of SSI on the dynamic response of the inner tank and the outer tank depends on the foundation types; and (3) Change in the seismic response of the structure by soil compaction in the piled raft foundation is about 10% and its effect is not negligible in the seismic design of the structure.

Design Safety Analysis of $9\%$ Nickel Steel Structure in Inner Tank Storage System (내부탱크 저장 시스템에서 $9\%$ 니켈강재 구조물의 설계 안전성에 관한 연구)

  • Kim Chung Kyun;Choi Dong Yul
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.49-55
    • /
    • 2001
  • This paper presents the design safety analysis of the inner tank structure, which is manufactured by 9 percent nickel steel sheets in the full containment type LNG storage tank. The FEM computed results indicate that top girder and several stiffener rings of the inner tank play an important role for controlling the deformation and stress intensity of the inner tank structure. The hydrostatic pressure due to cryogenic fluids gave more influential to the deformation of the inner tank wall compared with that of a cryogenic temperature of $-162^{\circ}C$. But, the deformation and stress of the inner tank. which is produced by the buckling loads, are very small because the external load is not applied to the top of the inner tank. This indicates the role of top girder and stiffener rings of the inner tank model is not important in full containment LNG storage tank.

  • PDF

On the Leakage Safety Analysis of $9\%$ Nickel Type LNG Storage Tank with Thermal Resistance Effects (열저항 효과를 고려한 $9\%$ 니켈강재식 LNG 저장탱크의 누설 안전성에 관한 연구)

  • Kim C.K.;Cho S.H.;Suh H.S.;Hong S.H.;Lee S.R.;Kim Y,G.;Kwon B.K.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.1 s.26
    • /
    • pp.1-8
    • /
    • 2005
  • In this study, the FE analysis has been presented for the leakage safety of $9\%$ nickel type LNG storage tank based on the thermal resistance effects between insulation panels, comer protection and prestressed concrete(PC) structures. The FEM calculated results show that the leakage safety of fiber glass blanket, perlite powder and cellular glass insulators does not guarantee any more due to a strength failure of the insulation structure. But the corner protection and PC structure of outer tank may delay or sustain the leaked LNG of 10 days even though the inner tank and insulation structure are simultaneously failed. This means that $9\%$ nickel steel type LNG storage tank may be safe because of a high strength of the corner protection and outer tank structures.

  • PDF

Study on Numerical Analysis for Structural Safety Verification of Overflow Preventer System for LNG Tank (LNG탱크 수위 넘침 방지 시스템의 구조 안전성을 검증하기 위한 수치 해석에 관한 연구)

  • Ryu, Young-Chun;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1801-1806
    • /
    • 2014
  • This paper proposed the design technology for the level meter of the overflow preventer system of LNG storage tank. The parts of LNG ship should be developed under considering the cryogenic environment. Therefore, we proposed the structure of level meter to prevent overflow of LNG tank using the numerical analysis method. The proposed level meter for the overflow preventer is manufactured and the performance is verified through international authorized inspection agency.

The Stress Measurement of Membrane Type LNG Storage Tank (멤브레인식 LNG저장탱크 응력측정법)

  • Kim, Y.K.;Hong, S.H.;Yoon, I.S.;Oh, B.T.;Seo, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.138-142
    • /
    • 2000
  • In LNG Tank, it is very important to measure the strain in Membrane by theoretical and experimental stress analysis. In this paper, perform the test about strain gage, thermal sensor and lead wire to make clear the properies. The test results conclude that stress measurement by strain gage must consider the effect of many factors to measure strain acculately. The corrections should be made on apparent strain, lead wire length and Membrane shape. It is also important to measure the temperatures accurately at the strain gage location

  • PDF