• Title/Summary/Keyword: LNG CC

Search Result 8, Processing Time 0.024 seconds

Operating Characteristics of LNG burner for Steam Reforming of Natural Gas (천연가스 수증기개질 반응용 LNG 버너의 운전 특성)

  • Shin, Jang-Sik;Park, Jong-Won;Yang, Hye-Kyong;Lee, Seung-Young;Song, Bong-Hyun;Shin, Seock-Jae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.477-480
    • /
    • 2006
  • In this study, we investigated operating characteristics of the LNG burner for steam methane reforming. The developed LNG burner and catalytic reactor to supply an efficient heat transfer between the combustion gas and catalyst got a good response of various operating load within 5-7 minute and high efficiency for steam methane reforming as a conversion of methane over 90%. We calculated the volume of catalyst for $1Nm^3/hr$ steam LNG reforming as $211cc/(Nm^3/hr\;H_2)$ and got the operating condition and design data of the burner and steam reforming for LNG.

  • PDF

A Study on the Economic Analysis of LNG Combined Cycle Thermal Power Plant in Cost Based Pool Electricity Markets (변동비반영 발전경쟁시장에서 LNG-복합 화력발전소의 경제성 분석에 관한 연구)

  • Lee, Cheon-Ho;Han, Seok-Man;Chung, Koo-Hyung;Kang, Dong-Ju;Kim, Bal-Ho H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1327-1333
    • /
    • 2008
  • Since Cost Based Pool markets has been continued to power markets, Genco. needs economic analysis about investment in power plants. Particularly most Private Genco.s have presently a construction plan about LNG combined cycle thermal power plants. In this paper, we propose a economic analysis method of LNG combined cycle thermal power plants using Economic Dispatch and Optimal Power Flow in CBP markets. Also we develope computation model using it for decision making to build a plant. This method can consider a variation of power facility like power plants and transmission lines in CBP markets. Finally, this dissertation provides a relevant case study to confirm the effect of cost factor to economical efficiency.

Fluid Structure Interaction Analysis of Membrane Type LNG CCS Experiencing the Sloshing Impact by Impinging Jet Model (멤브레인형 LNG 화물창의 강도평가를 위해 적용된 분사모델을 이용한 유체구조 연성해석에 관한 연구)

  • Hwang, Se Yun;Lee, Jang Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.71-78
    • /
    • 2015
  • The reliable sloshing assessment methods for LNG CCS(cargo containment system) are important to satisfy the structural strength of the systems. Multiphase fluid flow of LNG and Gas Compressibility may have a large effect on excited pressures and structural response. Impinging jet model has been introduced to simulate the impact of the LNG sloshing and analyze structural response of LNG CCS as a practical FSI(fluid structure interaction) method. The practical method based on fluid structure interaction analysis is employed in order to evaluate the structural strength in actual scale for Mark III CCS. The numerical model is based on an Euler model that employs the CVFEM(control volume based finite element method). It includes the particle motion of gas to simulate not only the interphase interaction between LNG liquid and gas and the impact load on the LNG insulation box. The analysis results by proposed method are evaluated and discussed for an effectiveness of FSI analysis method.

Structural Safety Assessment of Mark III Membrane Type Liquid Natural Gas Cargo Containment System under Ice Collision (빙 충돌에 대한 Mark III 멤브레인형 LNG CCS의 구조 안전성 평가)

  • Nho, In Sik;Yun, Young-Min;Park, Man-Je;Oh, Young-Taek;Kim, Sung-Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.126-132
    • /
    • 2014
  • In this study, a method for analyzing the collision and interaction between ice bergy bits and a Mark III type liquid natural gas (LNG) carrier was considered, and the structural safety of a ship's hull and cargo containment system (CCS) was evaluated. In the analysis, a constitutive model implementing the strain rate dependant mechanical property was used to consider the typical material characteristics of ice rationally. A relatively simple and easy ice structure interaction analysis procedure, compared with the accurate but complicated FSI analysis scheme, was suggested. When the ice bergy bits collided with ship's side hull under the four assumed scenarios, the structural behaviors of the ship structure and LNG CCS were simulated by applying the suggested ice collision analysis procedure using the commercial hydro-code LS-DYNA. In addition, the effects of the shapes and colliding speed of the ice bergy bits on the ice-structure interaction and safety of the CCS were examined in detail.

Strength Assessment of LNG CCS using Strength Analysis Method for Composite Materials (직교이방성 복합재료의 극저온 재료 물성치를 고려한 LNG CCS의 강도 평가에 관한 연구)

  • Jeong, Han Koo;Yang, Young Soon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.114-121
    • /
    • 2014
  • Liquefied natural gas(LNG) cargo containment system(CCS) has the primary function of ensuring both adequate structural safety with respect to sloshing load which is defined as a violent behaviour of the liquid contents in CCS due to external forced motions and thermal insulation keeping natural gas below its boiling point. Among different LNG CCS types such as independent B-type and membrane ones, Mark III CCS is considered in this paper to perform its strength assessment. Mark III CCS plate is designed and constructed by stacking various non-metallic engineering materials such as plywood, triplex, reinforced PU foam that are supported by series of mastic upon inner steel hull structure. From the viewpoint of structural analysis, this plated structure is treated as a laminated composite structure showing complex structural behaviour under external load. Advanced finite element models of Mark III CCS plate is generated and used in conjunction with ultimate strength based failure criteria from laminated composite mechanics for the strength assessment. The strength assessment is performed within the initial failure state of Mark III CCS plate. Results provide failure details such as failure locations and loads. Finally obtained results are reviewed using the loads from acceptance criteria suggested by classification.

A Study on Standardization of Fracture Strength of Secondary Barrier of FSB in MARK-III LNG CCS using Weibull Distribution (Weibull 통계분석을 이용한 MARK-III LNG CCS의 2차 방벽 FSB 파단강도 표준화 연구)

  • Jeong, Yeon-Jae;Kim, Hee-Tae;Kim, Jeong-Dae;Oh, Hoon-Gyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.137-143
    • /
    • 2021
  • In this study, the fracture strength of Flexible Secondary Barrier (FSB) composites was standardized by conducting a distribution analysis of the fracture probability, considering that the fracture strength of FSB composites such as glass fiber reinforced composites is relatively large. As the mechanical performance of FSB composites varies with the fiber direction, 20 replicate uniaxial tensile tests were performed for different temperatures ranging from the ambient to cryogenic conditions, considering the actual operating environment of liquefied natural gas. For the probability statistical analysis, the Weibull distribution analysis derived from the weakest link theory was used, considering the large variance in the fracture strength and brittle fracture behavior. The results of the Weibull distribution analysis were used to calculate the standard fracture strength of the FSB composites for different fiber directions. The findings can help ensure the reliability of the FSB mechanical properties in different fiber directions in the design of the secondary barrier and structural analyses.

Performance and Emission Characteristics of a CNG Engine Under Different Natural Gas Compositions (천연가스 조성 변화에 따른 CNG 엔진 성능 및 배기가스 특성)

  • Ha, Young-Cheol;Lee, Seong-Min;Kim, Bong-Gyu;Lee, Chang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.749-755
    • /
    • 2011
  • The performance and emission characteristics of a CNG (compressed natural gas) engine were experimentally investigated under different natural gas compositions. The engine specifications were as follows: 6606 cc, turbo, lean-burn-type; its ignition timing was fixed for the fuel gas with a HHV (higher heating value) of 10454 kcal/$Nm^3$. The experimental results showed that when the HHV of the fuel gas was changed from 10454 kcal/$Nm^3$ to 9811 kcal/$Nm^3$ and 9523 kcal/$Nm^3$, the average power reductions were 3.2 % and 3.4 % (1.5 % and 2.1 %, respectively, with A/F control switched off), respectively, and the average thermal-efficiency reductions were 1.1 % and 1.5 % (1.5 % and 2.1%, respectively, with A/F control switched off), respectively. The emissions of $CO_2$, CO, and $NO_x$ decreased as the HHV of the fuel gas was lowered. On the other hand, the emissions of THC (total hydrocarbon) were not consistent, and the extent of change in their emissions was small.