• Title/Summary/Keyword: LN2 cold heat

Search Result 7, Processing Time 0.021 seconds

Cryogenic Systems for HTS Power Cables

  • Yeom, Han-Kil;Koh, Deuk-Yong;Lee, Bong-Kyu;Kim, Ig-Seang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.133-135
    • /
    • 2003
  • Cryogenic systems are requirement for the operation of HTS power cables. In general, HTS power cables require temperature below 77K, a temperature that can be achieved from the liquid nitrogen at latm or sub-cooled LN2 above latm. HTS power cable needs sufficient refrigeration to overcome its low temperature heat loading. This loading typically cones in two forms : (1) heat leaks from the surroundings and (2) internal heat generation. This paper explains the cooling test system of 10m HTS power cable. This system is composed of storage dewar, auto fill system, core cryostat and cold-box. Storage dewar is a LN2 storage tank and auto fill system is a LN2 supply device to the sub-cooler, Core cryostat is a LN2 flow line. Cold box is a control unit of temperature and flow rate. It is composed of control valve, flow meter, sub-cooler and circulation pump, etc..

Comparative Study on the Refrigeration Processes between Refrigeration Using Vapor Recompression and Refrigeration Using LN2 Cold Heat for the Carbon Dioxide Liquefaction (이산화탄소 액화를 위한 증기 재압축 냉동 공정과 액체질소 냉열을 이용한 냉동 공정의 비교 연구)

  • SANGGYUN NOH
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.549-554
    • /
    • 2023
  • In this paper, three kinds of studies have been completed to obtain highly purified carbon dioxide having more than 7N purity as an electronic grade quality. PRO/II with PROVISION release January 2023 from AVEVA company was used, and Peng-Robinson equation of the state model with Twu's alpha function was selected for the modeling of the cryogenic distillation process. When using LN2 cold heat, we can obtain highest recovery of carbon dioxide as a bottom product for a cryogenic distillation column.

Experimental Study on the Thermal Performance of a Printed Circuit Heat Exchanger in a Cryogenic Environment (극저온 환경의 인쇄기판형 열교환기 열적성능에 대한 실험적 연구)

  • Kim, Dong Ho;Na, Sang Jun;Kim, Young;Choi, Jun Seok;Yoon, Seok Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.426-431
    • /
    • 2015
  • The advantages of a printed circuit heat exchanger (PCHE) are the compactness and efficiency derived from its heat-transfer characteristics; furthermore, a PCHE for which a diffusion bonding method was used during production can be applied to extreme environments such as a cryogenic condition. In this study, a micro-channel PCHE fabricated by diffusion bonding was investigated in a cryogenic environment regarding its thermal performance and the pressure drop. The test rig consists of an LN2 storage tank, vaporizers, heaters, and a cold box, whereby the vaporized cryogenic nitrogen flows in hot and cold streams. The overall heat-transfer coefficients were evaluated and compared with traditional correlations. Lastly, we suggested the modified heat-transfer correlations for a PCHE in a cryogenic condition.

Experimental Study on the Gasification Characteristics of Liquefied Gas Vaporizer with Various Shape (다양한 형상을 갖는 액화가스 기화기의 기화특성에 관한 실험적 연구)

  • Lee Yong-Hun;Lee Sang-Chul;Jeong Hyo-Min;Chung Han-Shik
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • This paper was studied for optimum design of the used vaporizer at a satellite station. Generally, the cold air is created by temperature drop on the vaporizer surface. In addition, the frost creates ice deposit layer, therefore, heat transfer on vaporizer decreases into the adiabatic condition. By this reason, recent vaporizer system is installed as parallel type, and it takes three times of vaporizer capacity. But this vaporizer system requires much installation costs and restricted by some space. It is very important to solve this problem. This study paper is regarding $LN_2$ vaporizer where the utilization increases recently. There are three variable conditions which are used in this study research. First, fin lengths of 4000mm, 6000mm, 8000mm and 0, 4, 8 fin types were applied rut each vaporizer. Second, we applied four season condition which consist of humidity, temperature and air velocity to the experimental environment. Finally, pressure was applied to get flow rate during experiment. This paper objective is to propose vaporizer type and length data for best performance of vaporizer through experiment.

  • PDF

Thermodynamic Analysis of a Hydrogen Liquefaction Process for a Hydrogen Liquefaction Pilot Plant with a Small Capacity (소용량 수소액화 파일럿 플랜트 구축을 위한 공정의 열역학 해석)

  • KIM, TAEHOON;CHOI, BYUNG-IL;HAN, YONG-SHIK;DO, KYU HYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • The present study discussed the thermodynamic analysis of the hydrogen liquefaction process to build a hydrogen liquefaction pilot plant with a small capacity (0.5 ton/day). A 2-stage Brayton cycle utilizing LNG/LN2 cold energy was suggested to be built in Korea for the hydrogen liquefaction pilot plant with a small capacity. Thermodynamic analysis on the effect of various variables on the efficiency of hydrogen liquefaction process was performed. As a result, the CASE in which the ortho-para conversion catalyst was infiltrated inside the heat exchanger showed the best process efficiency. Finally, thermodynamic analysis was performed on the effect of turbo expander compression ratio on the hydrogen liquefaction process and it was confirmed that an optimal turbo expander compression ratio exists.

Effectiveness analysis of pre-cooling methods on hydrogen liquefaction process

  • Yang, Yejun;Park, Taejin;Kwon, Dohoon;Jin, Lingxue;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.3
    • /
    • pp.20-24
    • /
    • 2020
  • The purpose of this analytic study is to design and examine an efficient hydrogen liquefaction cycle by using a pre-cooler. The liquefaction cycle is primarily comprised of a pre-cooler and a refrigerator. The fed hydrogen gas is cooled down from ambient temperature (300 K) to the pre-cooling coolant temperature (either 77 K or 120 K approximately) through the pre-cooler. There are two pre-cooling methods: a single pre-coolant pre-cooler and a cascade pre-cooler which uses two levels of pre-coolants. After heat exchanging with the pre-cooler, the hydrogen gas is further cooled and finally liquefied through the refrigerator. The working fluids of the potential pre-cooling cycle are selected as liquid nitrogen and liquefied natural gas. A commercial software Aspen HYSYS is utilized to perform the numerical simulation of the proposed liquefaction cycle. Efficiency is compared with respect to the various conditions of the heat exchanging part of the pre-cooler. The analysis results show that the cascade method is more efficient, and the heat exchanging part of the pre-coolers should have specific UA ratios to maximize both spatial and energy efficiencies. This paper presents the quantitative performance of the pre-cooler in the hydrogen liquefaction cycle in detail, which shall be useful for designing an energy-efficient liquefaction system.

Experimental training of shape memory alloy fibres under combined thermomechanical loading

  • Shinde, Digamber;Katariya, Pankaj V;Mehar, Kulmani;Khan, Md. Rajik;Panda, Subrata K;Pandey, Harsh K
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.519-526
    • /
    • 2018
  • In this article, experimental training of the commercial available shape memory alloy fibre (SMA) fibre under the combined thermomechanical loading is reported. SMA has the ability to sense a small change in temperature (${\geq}10^{\circ}C$) and activated under the external loading and results in shape change. The thermomechanical characteristics of SMA at different temperature and mechanical loading are obtained through an own lab-scale experimental setup. The analysis is conducted for two types of the medium using the liquid nitrogen (cold cycle) and the hot water (heat cycle). The experimental data indicate that SMA act as a normal wire for Martensite phase and activated behavior i.e., regain the original shape during the Austenite phase only. To improve the confidence of such kind of behavior has been verified by inspecting the composition of the wire. The study reveals interesting conclusion i.e., while SMA deviates from the equiatomic structure or consist of foreign materials (carbon and oxygen) except nickel and titanium may affect the phase transformation temperature which shifted the activation phase temperature. Also, the grain structure distortion of SMA wire has been examined via the scanning electron microscope after the thermomechanical cycle loading and discussed in details.