Load models are important for improving the accuracy of stability analysis and power flow studies. Load characteristics change for different voltages and frequencies. In this research, ANN is used to construct the load model. Characteristics of some residential loads are tested under various voltage and frequency conditions. Acquired data are used to construct load models by ANN. Experiments and modeling results are presented in conclusions.
본 논문에서는 의료영상 인식 기술 중 인식률이 뛰어나고 신뢰성 있는 대뇌출혈성 병변인식 시스템을 구현하기 위하여 신호처리 분야에서 주로 사용되는 Wavelet 변환과 신경망 기법을 이용하고자 한다. 그러나 신경망 기법에서 주로 사용되는 비선형 최적화기법인 Gradient descent BP는 최적화 문제점을 해결하기에는 수렴속도가 느리기 때문에 적합하지 않다. 따라서 본 논문에서는 기존 Gradient descent BP를 보완한 Levenberg-Marquardt Back-Propagation을 대뇌출혈성 병변인식에 적용하여 구현함으로써 총 50개의 패턴 중 45개의 영상이 인식에 성공하였고 전체 평균 인식률은 각각 90%와 87%의 인식률을 보였다.
Objective: The purpose of this study was to determine the normal morphometric landmarks of the uniting and dividing points of the brachial plexus (BP) in the periclavicular region to provide useful guidance in surgery of BP injuries. Methods: A total of 20 brachial plexuses were obtained from 10 adult, formalin-fixed cadavers. Distances were measured on the basis of the Chassaignac tubercle (CT), and the most lateral margin of the BP (LMBP) crossing the superior and inferior edge of the clavicle. Results: LMBP was located within 25 mm medially from the midpoint in all subjects. In the supraclavicular region, the upper trunk uniting at 21$\pm$7 mm from the CT, separating into divisions at 42$\pm$5 mm from the CT, and dividing at 19$\pm$4 mm from the LMBP crossing the superior edge of the clavicle. In the infraclavicular region, the distance from the inferior edge of the clavicle to the musculocutaneous nerve (MCN) origin was 49$\pm$12 mm, to the median nerve origin 57$\pm$7 mm, and the ulnar nerve origin 48$\pm$6 mm. From the lateral margin of the pectoralis minor to the MCN origin the distance averaged 3.3$\pm$10 mm. Mean diameter of the MCN was 4.3$\pm$1.1 mm (range, 2.5-6.0) in males (n = 6), and 3.1$\pm$1.5 mm (range, 1.6-4.0) in females (n = 4). Conclusion: We hope these data will aid in understanding the anatomy of the BP and in planning surgical treatment in BP injuries.
Although probiotics have been shown to improve health when consumed, recent studies have reported that they can cause unwanted side effects due to bacterial-human interactions. Therefore, the importance of prebiotics that can form beneficial microbiome in the gut has been emphasized. This study isolated and identified bacteria capable of producing biopoymer as a candidate prebiotic from traditional fermented foods. The isolated and identified strain was named WCYSK01 (Wissella sp. strain YSK01). The composition of the medium for culturing this strain was prepared by dissolving 3 g K2HPO4, 0.2 g MgSO4, 0.05 g CaCl2, 0.1 g NaCl in 1 L of distilled water. The LMBP(low molecular weight biopoymers) produced when fermentation was performed with sucrose and maltose as substrates were mainly consisted of DP3 (degree of polymer; isomaltotriose), DP4 (isomaltotetraose), DP5 (isomaltopentaose), and DP6 (isomaltoheptaose). The optimization of LMBP (low molecular weight of biopolymer) production was performed using the response surface methodology. The fermentation process temperature range of 18 to 32℃, the fermentation medium pH in the range of 5.1 to 7.9. The yield of LMBP production by the strain was found to be significantly affected by q fermentation temperature and pH. The optimal fermentation conditions were found at the normal point, and the production yield was more than 75% at pH 7.5 and temperature of 23℃.
본 연구에서는 낙동강 상류유역의 병렬 다목적댐군인 안동 및 임하다목적 댐의 장기간 유입량을 산정하는데 공간추계 신경망모형이 사용되었다. 공간추계 신경망모형은 역전파 알고리즘으로 LMBP와 BFGS-QNBP를 각각 사용하였다. 공간추계 신경망모형의 구조는 입력층, 은닉층 및 출력층의 3개의 층과 차례대로 8-8-2개의 노드로 구성되어 있다. 입력층 노드는 안동 및 임하다목적 댐의 월평균유입량, 월면적강우량, 월별 증발접시 증발량과 월평균기온으로 구성되어 있으며, 자료시계열은 시간적으로 차이가 있다. 공간추계 신경망모형의 훈련을 위하여 추계학적 모형중 하나인 PARMA(1,1)에 의해서 훈련자료를 모의발생시켰으며, 모의발생된 자료는 공간추계 신경망모형의 훈련에 사용되었다. 훈련을 통하여 공간추계 신경망모형의 매개변수인 최적연결강도와 편차를 산정하였다. 산정된 매개변수는 안동 및 임하다목적 댐의 실측자료를 이용하여 공간추계 신경망모형의 검증에 이용되었으며, 통계분석과 수문곡선의 비교를 통하여 우수한 결과를 나타내었다. 따라서 공간추계 신경망모형은 낙동강 상류유역의 병렬저수지군의 장기간 연계운영기법 개발을 위하여 기초적인 자료를 제공하고, 용수분배 및 관리에 도움을 줄 것이다.
Load models are important for improving the accuracy of stability analysis. Load characteristics are changed for voltage and frequency condition. In this research, ANN with LMBP learning rule is used to construct the load model. Characteristics of some residential loads are tested under various voltage and frequency conditions. Acquired data are used to construct load models by ANN. Constructed ANN load model are applied to transient stability analysis.
In this study, we proposed a residential load modeling method based on neuro-fuzzy inference system by considering of various harmonics. The developed method was implemented by using harmonic information, fundamental frequency and voltage which are essential input factors in conventional method. Thus, the proposed method makes it possible to effectively estimate load characteristics in power lines with harmonics. To show the effectiveness, the proposed method has been intensively tested with various dataset acquired under the different frequency and voltage and compared it with a conventional method based on neural networks.
Fault diagnosis of an assembled small motor relies usually on human experts hearing ability. The quality of diagnosis depends, however, heavily on physical conditions of the human experts. A fault diagnosis system for assembled small motors is developed using artificial neural network (ANN) in this paper. It is consisted of sound sampling device and fault diagnosis software package. Six parameters are defined to characterize the sampled sound waves. The Levenberg-Marquardt Backpropagation (LMBP) Algorithm is used to diagnose the fault of assembled small motors. Experimental results for more than two hundred small motors verify the performance of the developed system.
Elman Discrete Recurrent Neural Networks Model(EDRNNM) was used to be a suitable short-term hydrological forecasting tool yielding a very high degree of flood stage forecasting accuracy at Musung station of Wi-stream one of IHP representative basins in South Korea. A relative new approach method has recurrent feedback nodes and virtual small memory in the structure. EDRNNM was trained by using two algorithms, namely, LMBP and RBP The model parameters, optimal connection weights and biases, were estimated during training procedure. They were applied to evaluate model validation. Sensitivity analysis test was also performed to account for the uncertainty of input nodes information. The sensitivity analysis approach could suggest a reduction of one from five initially chosen input nodes. Because the uncertainty of input nodes information always result in uncertainty in model results, it can help to reduce the uncertainty of EDRNNM application and management in small catchment.
The field of load modeling has attracted the attention since it plays an important role for improving the accuracy of stability analysis and power flow estimation. Also, load modeling is an essential factor in the simulation and evaluation of power system performance. However, conventional load modeling techniques have some limitations with respect to accuracy for nonlinear and composite loads. Thus, precision load modeling technique and reasonable application method is needed for more accurate power system analysis. In this paper, we develop an intelligent load modeling method based. on neural network and application techniques for power system. The proposed method makes it possible to effectively estimate the load model for nonlinear models as well as linear models. Reasonable application method is also proposed for stability analysis. To demonstrate the validity of the proposed method, various experiments are performed and their results are presented.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.