• Title/Summary/Keyword: LIMITER

Search Result 783, Processing Time 0.023 seconds

Hysteresis Characteristics of Flux-Lock Type Superconducting Fault Current Limiter (자속구속형 고온초전도 사고전류제한기의 히스테리시스 특성)

  • Lim, Sung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.66-70
    • /
    • 2007
  • For the design to prevent the saturation of the iron core and the effective fault current limitation, the analysis for the operation of the flux-lock type superconducting fault current limiter (SFCL) with consideration for the hysteresis characteristics of the iron core is required. In this paper, the hysteresis characteristics of the flux-lock reactor, which is an essential component of the flux-lock type SFCL, were investigated. Under normal condition, the hysteresis loss of the iron core in the flux-lock type SFCL does not happen due to its winding structure. From the equivalent circuit for the flux-lock type SFCL and the fault current limiting experiments, the hysteresis curves could be drawn. From the analysis for both the hysteresis curves and the fault current limiting characteristics due to the number of turns for the 1st and 2nd windings, the increase of the number of turns in the 2nd winding of the flux-lock type SFCL had a role to prevent the iron core from saturation.

A Study on the Reliability of Superconducting Fault Current Limiter (초전도한류기의 신뢰도에 관한 연구)

  • Bae, In-Su;Kim, Sung-Yul;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.101-106
    • /
    • 2011
  • The failure of cooling system in Superconducting Fault Current Limiter(SFCL) increases the impedance of superconducting device, and due to malfunction of inner switches the SFCL opens the distribution system inadvertently when required to do so. In this paper, the ground fault and short circuit fault were classified as active failure and the open circuit fault was passive failure. A reliability model of SFCL considers the passive failure as well as active failure, and in the case study the reliability indices of distribution system are evaluated. It is possible that the reliability evaluation excluded passive failure makes the customers reliability seem so worse than it really was. Therefore, the reliability models of SFCL must include the active failure and passive failure together to evaluate the reliability of distribution system connected SFCL.

Analysis on the Protective Coordination with the Superconducting Fault Current Limiter for the Application into the KEPCO Grid

  • Kim, Jin-Seok;Kim, Jae-Chul;Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.3
    • /
    • pp.33-39
    • /
    • 2011
  • In this paper, the protection coordination of the protection devices such as the over-current relay (OCR) and recloser (R/C) with superconducting fault current limiter (SFCL) was investigated in a KEPCO grid. The operation time and protection coordination of the protection devices were changed by the SFCL. Through the analysis for protection coordination between the SFCL and the protection devices in the KEPCO grid, the operation time was observed to depend on the impedance of the SFCL.

The design and analysis of Operational characteristic of Shielded Inductive Fault Current Limiter using high-$T_c$ Superconducting (고온초전도체를 이용한 차폐유도형 전류제한기의 설계 및 동작 특성해석)

  • Song, Jae-Joo;Lee, Jae;Lim, Sung-Hun;Kang, Hyeong-Gon;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.339-342
    • /
    • 2001
  • In this paper, the characteristics of the shielded inductive superconducting fault current limiter(FCL) were simulated and analyzed to search for the parameter to determine FCL operation, Fault current limiting operation can be executed as resistive or inductive type, which is determined by iron-core radius and the number of the primary coil turns. It was considered through this paper that the operation of each was compared and examined about the merit of each mode.

  • PDF

Properties of a Hybrid Type Superconducting Fault Current Limiter using YBa2Cu3O7 Films (YBa2Cu3O7 박막을 이용한 하이브리드형 초전도 사고전류제한기의 특성)

  • Choi, Hyo-Sang;Cho, Yong-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.391-397
    • /
    • 2006
  • We present investigations of a hybrid type superconducting fault current limiter (SFCL), which consists of transformers and resistive superconducting elements. The secondary windings of the transformer were separated into several electrically isolated circuits and linked inductively with each other by mutual flux, each of which has a superconducting current limiting element of $YBa_2Cu_3O_7$ (YBCO) stripes as a current limiting element. Simple connection in series of the SFCL elements tends to produce ill-timed quenching because of power dissipation unbalance between SFCL elements. Both electrical isolation and mutual flux linkage of the elements provides a solution to power dissipation unbalance, inducing simultaneous quench and current redistribution of the YBCO films. This design enables to increase the voltage rating of SFCL with given YBCO stripes.

Development of EMTDC model for Resistance type Fault Current Limiter considering transient characteristic (저항형초전도한류기 과도특성을 고려한 EMTDC 모델개발)

  • 윤재영;김종율;이승렬
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2003
  • Nowadays, one of the serious problems in KEPCO(Korea Electric Power Co-Operation) system is the more higher fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(High Voltage Direct Current-Back to Back) and FCL(fault current limiter). But, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductor -Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. Under this background, this paper presents the EMTDC(Electro-Magnetic Transient Direct Current) model for resistance type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching phenomena occur.

Characteristic of Magnetic Shielding Type High-Tc Superconducting Fault Current Limiter Using Magnetization Curve of Iron Core (철심의 자화곡선을 이용한 자기차폐형 고온초전도 전류제한기 특성)

  • Lee, Jae;Lim, Sung-Hun;Song, Jae-Joo;Kim, Jun-Hyuok;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.511-514
    • /
    • 2002
  • In this paper, we compared the characteristic of fault current liminting in the magnetic shielding type High-Tc superconducting fault current limiter(FCL) using both Piecewise linear magnetization curve and real magnetization one of iron core. From this paper, the characteristics of fault current limiting in both cases showed many differences. The latter has higher fault current than the former, because the saturation of iron core was reflected and more accumulated during fault. It is expected that the more exact characteristic of magnetic shielding type High-Tc superconducting FCL was obtained in the case of design and modeling.

  • PDF

Modeling of the HTS Fault Current Limiter Considering Quenching Characteristic (퀸칭 특성을 고려한 EMTDC 저항형 초전도 한류기 모텔링)

  • 윤재영;김종율;이승렬
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.2
    • /
    • pp.73-79
    • /
    • 2004
  • Nowadays, one of the serious problems in KEPCO system is the larger fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(Back to Back) and FCL(fault current limiter). However, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductor-Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. Under this background, this paper presents the EMTDC model for resistive type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching Phenomena occur.

Current Limiting Characteristics of Superconducting Fault Current Limiter for Reduction of Unsymmetrical Fault Current in a Three-Phase Power System (삼상전력계통의 비대칭고장전류 저감을 위한 초전도한류기의 전류제한특성)

  • Kim, Min-Yeong;Lim, Sung-Hun;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.8-8
    • /
    • 2010
  • In this paper, the limiting characteristics of the fault current in a power system with a superconducting fault current limiter(SFCL) applied into neutral line of main transformer in a distribution power line were analyzed. The SFCL applied into the neutral line of main transformer power system can limit the unsymmetrical fault current from the single-line ground fault or the double-line ground fault. In addition, it could be decreased a number of SFCL and a load. This method could be expected to reduction of a power loss in the neutral line, because of a neutral line current is zero in ordinary times.

  • PDF

Fast Charging Photoflash Capacitor Charger with Wide Range Current Limiter

  • Choi, Won-Ho;Lee, Woo-Kwan;Kim, Soo-Won
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.315-321
    • /
    • 2007
  • The fast charging photoflash capacitor charger with wide range current limiter is presented. By using proposed control logic block and wide range current limiter, the photoflash capacitor charger can reduce charging time and control life of battery for user convenience. The proposed photoflash capacitor charger has 3s charging time at 3.3V battery voltage, 1.2A current limit condition. It is well-suited for portable device application like digital camera, digital video camera, and mobile phone with camera.

  • PDF