• 제목/요약/키워드: LIM gene

검색결과 1,086건 처리시간 0.027초

Alteration of Apoptosis during Differentiation in Human Dental Pulp-Derived Mesenchymal Stem Cell

  • Lee, Hyeon-Jeong;Park, Byung-Joon;Jeon, Ryoung-Hoon;Jang, Si-Jung;Son, Young-Bum;Lee, Sung-Lim;Rho, Gyu-Jin;Kim, Seung-Joon;Lee, Won-Jae
    • 한국동물생명공학회지
    • /
    • 제34권1호
    • /
    • pp.2-9
    • /
    • 2019
  • Because mesenchymal stem cells (MSCs) maintain distinct capacities with respect to self-renewal, differentiation ability and immunomodulatory function, they have been highly considered as the therapeutic agents for cell-based clinical application. Of particular, differentiation condition alters characteristics of MSCs, including cellular morphology, expression of gene/protein and cell surface molecule, immunological property and apoptosis. However, the previous results for differentiation-related apoptosis in MSCs have still remained controversial due to varied outcomes. Therefore, the present study aimed to disclose periodical alterations of pro- and anti-apoptosis in MSCs under differentiation inductions. The human dental pulp-derived MSCs (DP-MSCs) were differentiated into adipocytes and osteoblasts during early (1 week), middle (2 weeks) and late (3 weeks) stages, and were investigated on their apoptosis-related changes by Annexin V assay, qRT-PCR and western blotting. The ratio of apoptotic cell population was significantly (p < 0.05) elevated during the early to middle stages of differentiations but recovered up to the similar level of undifferentiated state at the late stage of differentiation. In the expression of mRNA and protein, whereas expressions of pro-apoptosis-related makers (BAX and BAK) were not altered in any kind and duration of differentiation inductions, anti-apoptosis marker (BCL2) was significantly (p < 0.05) elevated even at the early stage of differentiations. The recovery of apoptotic cell population at the late stage of differentiation is expected to be associated with the response by elevation of anti-apoptotic molecules. The present study may contribute on understanding for cellular mechanism in differentiation of MSCs and provide background data in clinical application of MSCs in the animal biotechnology to develop effective and safe therapeutic strategy.

Supplementation with psyllium seed husk reduces myocardial damage in a rat model of ischemia/reperfusion

  • Lim, Sun Ha;Lee, Jongwon
    • Nutrition Research and Practice
    • /
    • 제13권3호
    • /
    • pp.205-213
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Myocardial infarction (MI) is caused by extensive myocardial damage attributed to the occlusion of coronary arteries. Our previous study in a rat model of ischemia/reperfusion (I/R) demonstrated that administration of arabinoxylan (AX), comprising arabinose and xylose, protects against myocardial injury. In this study, we undertook to investigate whether psyllium seed husk (PSH), a safe dietary fiber containing a high level of AX (> 50%), also imparts protection against myocardial injury in the same rat model. MATERIALS/METHODS: Rats were fed diets supplemented with PSH (1, 10, or 100 mg/kg/d) for 3 d. The rats were then subjected to 30 min ischemia through ligation of the left anterior descending coronary artery, followed by 3 h reperfusion through release of the ligation. The hearts were harvested and cut into four slices. To assess infarct size (IS), an index representing heart damage, the slices were stained with 2,3,5-triphenyltetrazolium chloride (TTC). To elucidate underlying mechanisms, Western blotting was performed for the slices. RESULTS: Supplementation with 10 or 100 mg/kg/d of PSH significantly reduces the IS. PSH supplementation (100 mg/kg/d) tends to reduce caspase-3 generation and increase BCL-2/BAX ratio. PSH supplementation also upregulates the expression of nuclear factor erythroid 2-related factor 2 (NRF2), and its target genes including antioxidant enzymes such as glutathione S-transferase mu 2 (GSTM2) and superoxide dismutase 2 (SOD2). PSH supplementation upregulates some sirtuins ($NAD^+$-dependent deacetylases) including SIRT5 (a mitochondrial sirtuin) and SIRT6 and SIRT7 (nuclear sirtuins). Finally, PSH supplementation upregulates the expression of protein kinase A (PKA), and increases phosphorylated cAMP response element-binding protein (CREB) (pCREB), a target protein of PKA. CONCLUSIONS: The results from this study indicate that PSH consumption reduces myocardial I/R injury in rats by inhibiting the apoptotic cascades through modulation of gene expression of several genes located upstream of apoptosis. Therefore, we believe that PSH can be developed as a functional food that would be beneficial in the prevention of MI.

Drosophila CrebB is a Substrate of the Nonsense-Mediated mRNA Decay Pathway that Sustains Circadian Behaviors

  • Ri, Hwajung;Lee, Jongbin;Sonn, Jun Young;Yoo, Eunseok;Lim, Chunghun;Choe, Joonho
    • Molecules and Cells
    • /
    • 제42권4호
    • /
    • pp.301-312
    • /
    • 2019
  • Post-transcriptional regulation underlies the circadian control of gene expression and animal behaviors. However, the role of mRNA surveillance via the nonsense-mediated mRNA decay (NMD) pathway in circadian rhythms remains elusive. Here, we report that Drosophila NMD pathway acts in a subset of circadian pacemaker neurons to maintain robust 24 h rhythms of free-running locomotor activity. RNA interference-mediated depletion of key NMD factors in timeless-expressing clock cells decreased the amplitude of circadian locomotor behaviors. Transgenic manipulation of the NMD pathway in clock neurons expressing a neuropeptide PIGMENT-DISPERSING FACTOR (PDF) was sufficient to dampen or lengthen free-running locomotor rhythms. Confocal imaging of a transgenic NMD reporter revealed that arrhythmic Clock mutants exhibited stronger NMD activity in PDF-expressing neurons than wild-type. We further found that hypomorphic mutations in Suppressor with morphogenetic effect on genitalia 5 (Smg5) or Smg6 impaired circadian behaviors. These NMD mutants normally developed PDF-expressing clock neurons and displayed daily oscillations in the transcript levels of core clock genes. By contrast, the loss of Smg5 or Smg6 function affected the relative transcript levels of cAMP response element-binding protein B (CrebB) in an isoform-specific manner. Moreover, the overexpression of a transcriptional repressor form of CrebB rescued free-running locomotor rhythms in Smg5-depleted flies. These data demonstrate that CrebB is a rate-limiting substrate of the genetic NMD pathway important for the behavioral output of circadian clocks in Drosophila.

바위수염 추출물의 파골세포 분화 억제 및 에스트라디올 활성 평가 (Inhibitory Effect of Osteoclastogenesis and Estradiol Activity of Myelophycus simplex Extract)

  • 하현주;임형진;김민경;박선경;노문철;정선희;이승재;이상훈
    • 한국해양바이오학회지
    • /
    • 제12권2호
    • /
    • pp.75-80
    • /
    • 2020
  • In the present study, the estrogenic activity and anti-osteoclastogenic activity of the Myelophycus simplex extract were evaluated using T47D-Kbluc cells and bone marrow-derived macrophages (BMMs). As a result of the measurement of the estrogenic activity in the T47D-Kbluc cell line, the Myelophycus simplex extract showed increased estrogenic activity in a dose-dependent manner in association with its concentration. To confirm the regulatory effect of the Myelophycus simplex extract on the estrogen-responsive gene, the Myelophycus simplex extract showed a similar tendency to estradiol: the expression of estrogen receptor 1 (ESR1) was significantly decreased while the expression of estrogen receptor 2 (ESR2) was increased. Furthermore, the Myelophycus simplex extract exhibited an inhibitory effect on osteoclast differentiation. In conclusion, these Myelophycus simplex extracts might be regarded as candidates for further studies or the development of functional food products or medicine to prevent or avoid postmenopausal symptoms for women.

NaCl Concentration-Dependent Aminoglycoside Resistance of Halomonas socia CKY01 and Identification of Related Genes

  • Park, Ye-Lim;Choi, Tae-Rim;Kim, Hyun Joong;Song, Hun-Suk;Lee, Hye Soo;Park, Sol Lee;Lee, Sun Mi;Kim, Sang Hyun;Park, Serom;Bhatia, Shashi Kant;Gurav, Ranjit;Sung, Changmin;Seo, Seung-Oh;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권2호
    • /
    • pp.250-258
    • /
    • 2021
  • Among various species of marine bacteria, those belonging to the genus Halomonas have several promising applications and have been studied well. However, not much information has been available on their antibiotic resistance. In our efforts to learn about the antibiotic resistance of strain Halomonas socia CKY01, which showed production of various hydrolases and growth promotion by osmolytes in previous study, we found that it exhibited resistance to multiple antibiotics including kanamycin, ampicillin, oxacillin, carbenicillin, gentamicin, apramycin, tetracycline, and spectinomycin. However, the H. socia CKY01 resistance pattern to kanamycin, gentamicin, apramycin, tetracycline, and spectinomycin differed in the presence of 10% NaCl and 1% NaCl in the culture medium. To determine the mechanism underlying this NaCl concentration-dependent antibiotic resistance, we compared four aminoglycoside resistance genes under different salt conditions while also performing time-dependent reverse transcription PCR. We found that the aph2 gene encoding aminoglycoside phosphotransferase showed increased expression under the 10% rather than 1% NaCl conditions. When these genes were overexpressed in an Escherichia coli strain, pETDuet-1::aph2 showed a smaller inhibition zone in the presence of kanamycin, gentamicin, and apramycin than the respective control, suggesting aph2 was involved in aminoglycoside resistance. Our results demonstrated a more direct link between NaCl and aminoglycoside resistance exhibited by the H. socia CKY01 strain.

스마트-해섭(Smart-HACCP) 적용을 위한 식품안전 검시기술 동향 (Current status of food safety detection methods for Smart-HACCP system)

  • 임민철;우민아;최성욱
    • 식품과학과 산업
    • /
    • 제54권4호
    • /
    • pp.293-300
    • /
    • 2021
  • 식품안전사고는 2009년 이후 해마다 5천건 이상 매년 2%씩 증가하고 있는 추세이며 환경오염 및 농수산물 원산지표시 위반 등이 증가하고 있어 먹거리 안전에 대한 국민 불안은 가중되고 있는 실정이다. 식품안전사고를 예방할 수 있는 가장 좋은 방법은 빨리 검사하는 방법이라고 대부분 알고 있지만 식품생산 및 유통 현장에 분석 비전문가 수준에서 활용할 수 있는 검사기술이 부족한 실정이다. 최근 현장진단기술 중 시료에서 검사까지 가능한 STA 기술을 중심으로 유전자 기반 식중독균을 검사하는 방법에 대해 소개하였다. 사람이 아닌 원격지 무인으로 식품위해인자를 직접적으로 검사하여 식품안전정보를 위변조 없이 생성할 수 있다면 현재의 빅데이터와 인공지능 기술로부터 보다 정확한 위험을 예측할 수 있어 오염원을 관리할 수 있다. 이러한 정보 처리는 현재 클라우드 기술을 이용하여 스마트폰에서도 활용 가능한 수준이기 때문에 영세사업장이나 공공 단체급식 등에 활용 가능할 것으로 판단된다.

대구지역 야생조류에서 분리된 대장균의 항생제 내성 조사 (Antimicrobial resistance of Escherichia coli isolated from wild birds in Daegu)

  • 김경희;임현숙;이정우;박대현;양창렬;조재근
    • 한국동물위생학회지
    • /
    • 제44권4호
    • /
    • pp.209-216
    • /
    • 2021
  • This study was aimed to investigate occurrence and the antimicrobial resistance of Escherichia coli isolates obtained from the feces of wild birds in Daegu. In total, 98 E. coli isolates (17.9%) were obtained from 547 fecal samples of wild birds. The E. coli carried by the birds showed a relatively high rate of antimicrobial resistance to tetracycline (27.6%) and ampicillin (21.4%). Drug resistance of the isolates to the others (penicillins, cephems, carbapenems, aminoglycosides, quinolones, sulfonamides and phenicols) resulted in the rates less than 20%, and all isolates were susceptible to imipenem, ciprofloxacin, cefotetan, and amikacin. Approximately, 45% E. coli among the isolates were resistant to one or more drugs tested. The higher rate of tetracycline resistance led us to determine the prevalence of the tet genes (tetA, tetB, tetC, tetD and tetE) in the tetracycline-resistant E. coli isolates by using PCR. All isolates of the tetracycline-resistant E. coli contained at least one or more of these tet genes examined. The most prevalent one was tetA (59.3%), and followed by tetB (7.4%) when tested with the selected 5 tet genes. Except tetA and tetB, however, the remaining tet genes (tetC, tetD, and tetE) tested were not found in this study. Nine isolates among the tetracycline-resistant E. coli contained the two (tetA and tetB) determinants of tetracycline resistance, simultaneously.

Direct Contact with Platelets Induces Podoplanin Expression and Invasion in Human Oral Squamous Cell Carcinoma Cells

  • Park, Se-Young;Lee, Sun Kyoung;Lim, Mihwa;Kim, Bomi;Hwang, Byeong-Oh;Cho, Eunae Sandra;Zhang, Xianglan;Chun, Kyung-Soo;Chung, Won-Yoon;Song, Na-Young
    • Biomolecules & Therapeutics
    • /
    • 제30권3호
    • /
    • pp.284-290
    • /
    • 2022
  • Oral squamous cell carcinoma (OSCC) is mostly diagnosed at an advanced stage, with local and/or distal metastasis. Thus, locoregional and/or local control of the primary tumor is crucial for a better prognosis in patients with OSCC. Platelets have long been considered major players in cancer metastasis. Traditional antiplatelet agents, such as aspirin, are thought to be potential chemotherapeutics, but they need to be used with caution because of the increased bleeding risk. Podoplanin (PDPN)-expressing cancer cells can activate platelets and promote OSCC metastasis. However, the reciprocal effect of platelets on PDPN expression in OSCC has not been investigated. In this study, we found that direct contact with platelets upregulated PDPN and integrin β1 at the protein level and promoted invasiveness of human OSCC Ca9.22 cells that express low levels of PDPN. In another human OSCC HSC3 cell line that express PDPN at an abundant level, silencing of the PDPN gene reduced cell invasiveness. Analysis of the public database further supported the co-expression of PDPN and integrin β1 and their increased expression in metastatic tissues compared to normal and tumor tissues of the oral cavity. Taken together, these data suggest that PDPN is a potential target to regulate platelet-tumor interaction and metastasis for OSCC treatment, which can overcome the limitations of traditional antiplatelet drugs.

가볍다차(茶)가 고지방식이로 유도된 비만 마우스에서 항염증에 미치는 효과 (The Anti-Inflammatory Effect of Gabyeobda Tea in High Fat Diet-Induced Obese Mice)

  • 오량량;임수경;신승우;김호준
    • 한방비만학회지
    • /
    • 제22권1호
    • /
    • pp.11-20
    • /
    • 2022
  • Objectives: The purpose of this study was to investigate the effects of Gabyeobda tea (GT) on anti-inflammation in ice induced high fat diet (HFD). Methods: The C57BL/6 mice fed HFD were administrated with GT once daily for 8 weeks. The changes of body weight, calorie intake levels were measured in mice. The level of serum total cholesterol, triglyceride, high density lipoprotein cholesterol, glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT) were measured in mice by enzyme-based assay. It was also observed the histological changes of liver, and fat tissues with hematoxylin and eosin staining. Further real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay were employed to detect inflammatory cytokine levels such as tumor necrosis factor (TNF)-𝛼, interleukin (IL)-6, and IL-1𝛽. Results: HFD+GT group, which was administered with GT with HFD, showed no body weight gain compared with HFD group. However, levels of GOT, GPT, and inflammatory cytokines such as TNF-𝛼, IL-6, and IL-1𝛽 in the blood of HFD+GT group were significantly reduced compared with HFD group. In addition, the messenger RNA (mRNA) expression level of the IL-12 gene was significantly reduced and the mRNA expression level of the IL-10 was increased in the liver. Conclusions: It suggests that Gabyeobda tea can alleviate inflammatory responses induced by high fat diet by inhibiting inflammatory cytokines production.

Screening of Bacterial Antagonists to Develop an Effective Cocktail against Erwinia amylovora

  • Choi, Dong Hyuk;Choi, Hyun Ju;Kim, Yeon Ju;Lim, Yeon-Jeong;Lee, Ingyeong;Park, Duck Hwan
    • 식물병연구
    • /
    • 제28권3호
    • /
    • pp.152-161
    • /
    • 2022
  • Several types of chemical bactericides have been used to control fire blight. However, their excessive usage leads to environmental deterioration. Therefore, several researchers have analyzed antagonistic microorganisms as promising, effective, and safe biological control agents (BCAs). The primary aim of this study was to screen for potential antagonistic bacteria that suppress Erwinia amylovora. Among the 45 isolates studied, 5 strains showed the largest inhibition zone against E. amylovora. 16S rRNA gene sequencing identified them as Bacillus amyloliquefaciens (KPB 15), B. stratosphericus (KPB 21), B. altitudinis (KPB 25), B. safensis (KPB 31), and B. subtilis (KPB 39). KPB 25 and 31 reduced the lesion size of fire blight by 50% in immature apple fruits, and did not show antagonism against each other. Therefore, KPB 25 and 31 were selected to develop an antagonistic mixture against fire blight. Although the mixture with KPB 25 and 31 showed a slightly increased ability to reduce lesion size on immature fruits, they did not exhibit a synergistic effect in reducing E. amylovora population compared to each strain alone. Nevertheless, we have identified these two strains as useful and novel BCAs against fire blight with additional benefits safety and potential in developing a mixture without loss of their activity, owing to the absence of antagonism against each other.