• Title/Summary/Keyword: LI2

Search Result 9,233, Processing Time 0.039 seconds

Structure and Properties of $LiTaO_3$ Type Solid Solutions in $Li_2O-Al_2O_3-Ta_2O_5$ Ternary System ($Li_2O-Al_2O_3-Ta_2O_5$ 삼성분계에 있어 $LiTaO_3$ 고용체의 구조 및 특성에 관한 연구)

  • 김정돈;흥국선;주기태
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.405-410
    • /
    • 1996
  • The partial substitution of LiTaO3 with Al2O3 caused the variation of dielectric properties and a lower melting temperature yielding an easier growth of single crystal. The lattice constants and Raman band broadening were measured for the LiTaO3 solid solution in which the cations of Li+ and Ta5+ were partially substituted by Al3+ cation. The LiTaO3 type limit phases were obtained. ; Li1.15Al0.45Ta0.7O3 for cationic excess Li1.15Al0.45Ta0.7O3 for stoichiometry Li0.85Al0.05TaO3 for cationic deficit. The second phase was formed beyond the solubility limit. The limit phase (Li0.85Al0.05TaO3) in the region of cationic deficit showed the lowest Cuire temperature of 61$0^{\circ}C$ and melting point of 152$0^{\circ}C$ compared to the solid solutions in other regions (TMp=1$650^{\circ}C$, Tc=69$0^{\circ}C$ for LiTaO3)

  • PDF

Solid-State $CO_2$ Sensor using ${Li_2}{CO_3}-{Li_3}{PO_4}-{Al_2}{O_3}$ Solid Electrolyte and ${LiMn_2}{O_4}$ as Reference Electrode (${Li_2}{CO_3}-{Li_3}{PO_4}-{Al_2}{O_3}$계의 고체 전해질 및 ${LiMn_2}{O_4}$의 기준전극을 사용한 $CO_2$ 가스센서)

  • 김동현;윤지영;박희찬;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.817-823
    • /
    • 2000
  • A solid-state electrochemicall cell for sensing CO2 gas was fabricated using a solid electrolyte of Li2CO3-Li3PO4-Al2O3 mixture and a reference electrode of LiMn2O4. The e.m.f. (electromotive force) of sensor showed a good accordance with theoretical Nernst slope (n=2) for CO2 gas concentration range of 100-10000 ppm above 35$0^{\circ}C$. The e.m.f. of sensor was constant regardless of oxygen partial pressure at the high temperature above 0.1 atm. It was, however, a little depended on oxygen partial pressure as the pressure decreased below 0.1 atm. The oxygen-dependency of our sensor gradually disappeared as the operating temperature increased. The sensing behavior of our CO2 sensor was affected by the presence of water vapor, but its effect was small comparing with other sensors.

  • PDF

Corrosion Behavior of Austenitic Alloys in the Molten Salts of $LiCl-Li_2O_2$ ($LiCl-Li_2O_2$ 용융염계에서 오스테나이트계 합금의 부식거동)

  • 오승철;윤기석;임종호;조수행;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.373-378
    • /
    • 2003
  • As a part of assessment of the structural material for the molten salt handling system, corrosion behavior of austenitic alloys, Fe-base and Ni-base in the molten salt of $LiCl-Li_2O_2$ was investigated in the range of temperature; 650~$725^{\circ}C$, time; 24- 168h, $Li_2O$; 3wt%, mixed gas; Ar-10%$O_2$. In the molten salt of $LiCl-Li_2O_2$, Ni-base alloys showed higher corrosion resistance than Fe-base alloys. Fe-base alloy with low Fe and high Ni contents exhibited better corrosion resistance. The scales of $Cr_2O_3$, $FeCr_2O_4$ on Fe-base alloys were showed, and $Cr_2O_3$, $NiFe_2O_4$ on Ni-base alloys were also showed.

  • PDF

Stabilization of LiMn2O4 Electrode for Lithium Secondary Bttery (II) -Stability of Substituted LiMn2O4 in Aqueous System- (리튬이차전지용 정극활물질 LiMn2O4의 안정화(II) -수용액계에서 치환형 LiMn2O4의 안정성-)

  • Lee, Jin-Sik;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.832-837
    • /
    • 1999
  • Stability of a cathode material was determined by Tafel plot in 1 M LiOH solution. The stabilized $LiM_xMn_{2-x}O_4$ (x=0.05~0.1) electrode resulted in overpotential of 0.13~0.15 mV at 100 mA. This overpotential was 0.05 mV lower than that of the spinel structured $LiMn_2O_4$ electrode. Conductivity test at various potentials showed that the conductivity of $LiM_xMn_{2-x}O_4$ was higher than that of the spinel structured $LiMn_2O_4$ and the bulk resistance of $LiM_xMn_{2-x}O_4$ due to the dissolution of $Mn^{2+}$ was lowered.

  • PDF

The study on the variaty of anode materials, $C_6Li$ for secondary battery (2차 전지 음극 재료용 $C_6Li$의 다양화에 관한 연구)

  • 오원춘;김범수;이영훈;고영신
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.660-666
    • /
    • 1998
  • We discussed structure, energy state, characteristics of thermal stability, and electrochemical properties of Li-GFICs, Li-PCICs, and Li-AGICs during the intercalation process. According to X-ray diffraction patterns, we observed phase of stage 2 mainly from Li-GFICs, while stage 1 phase as well as stage 2 from Li-PCICs. For the structure of Li-AGICs, stage 1 phase was dominant, but it was not possible to obtain pure stage 1 compound probably due to structural characteristics of artificial graphite. We measured energy state of the compounds to stage stability, and revealed that Li-AGICs and Li-GFICs were in more stable state than Li-PCICs. Therefore, those two compounds could be excellent candidate for energy reserve material. From the study of thermal degradation, Li-GFICs showed strong exothermic reaction at around 300 and $400^{\circ}C$. In the study of thermal stability of Li-AGIC at various temperatures, we observed that lithium was not completely deintercalated and high stage was maintained even at high temperature. In the case of charge, discharge, and electrochemical studies, Li-GFICs showed the best results.

  • PDF

Preparation and cation mixing phenomena of LiCo$O_2$and $LiCo_{1-x}$$Ni_x$$O_2$ solid solutions (LiCo$O_2$$LiCo_{1-x}$$Ni_x$$O_2$고용체의 제조 및 양이온 혼합 현상)

  • 임창성;안홍주;강승민;하정수;고영신
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.6
    • /
    • pp.601-605
    • /
    • 1999
  • $LiCoO_2$and $LiCo_{1-x}$$Ni_x$$O_2$ solid solutions were fabricated by the solid state reaction process. The structural cation mixing phenomena were investigated using XRD, SEM, particle size analysis and $^7$Li NMR,The synthesized LiCoO$_2$ and $LiCo_{1-x}Ni_XO_2$ microcrystallines showed the hexagonal layered structures. Mean particle sizes were increased with the increase of the amount of nickel in the solid solutions. The cation mixing effects were increased as increasing the fraction of nickel(x), x = 0.3, 0.5, 0.7. the peak frequency of $^7$Li NMR was shifted to the higher frequency and the line width increased as increasing the amount of nickel in the solid solutions.

  • PDF

Fabrication of Li2MnSiO4 Cathode Thin Films by RF Sputtering for Thin Film Li-ion Secondary Batteries and Their Electrochemical Properties (RF 스퍼터법을 이용한 Li2MnSiO4 리튬 이차전지 양극활물질 박막 제조 및 전기화학적 특성)

  • Chae, Suman;Shim, Joongpyo;Sun, Ho-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.447-453
    • /
    • 2017
  • In this study, $Li_2MnSiO_4$ cathode material and LiPON solid electrolyte were manufactured into thin films, and the possibility of their use in thin-film batteries was researched. When the RTP treatment was performed after $Li_2MnSiO_4$ cathode thin-film deposition on the SUS substrate by a sputtering method, a ${\beta}-Li_2MnSiO_4$ cathode thin film was successfully manufactured. The LiPON solid electrolyte was prepared by a reactive sputtering method using a $Li_3PO_4$ target and $N_2$ gas, and a homogeneous and flat thin film was deposited on a $Li_2MnSiO_4$ cathode thin film. In order to evaluate the electrochemical properties of the $Li_2MnSiO_4$ cathode thin films, coin cells using only a liquid electrolyte were prepared and the charge/discharge test was conducted. As a result, the amorphous thin film of RTP treated at $600^{\circ}C$ showed the highest initial discharge capacity of about $60{\mu}Ah/cm^2$. In cases of coin cells using liquid/solid double electrolyte, the discharge capacities of the $Li_2MnSiO_4$ cathode thin films were comparable to those without solid LiPON electrolyte. It was revealed that $Li_2MnSiO_4$ cathode thin films with LiPON solid electrolyte were applicable in thin film batteries.

Electrochemical Performances of LiMn2O4:Al Synthesized by Solid State Method (고상법으로 합성한 LiMn2O4:Al의 전기화학적 특성)

  • Park, Hye-Jung;Park, Sun-Min;Roh, Gwang-Chul;Han, Cheong-Hwa
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.531-536
    • /
    • 2011
  • Al doped $LiMn_2O_4$ ($LiMn_2O_4:Al$) synthesized by several Al doping process and Solid State method. The Al contents in $Mn_{1-x}Al_xO_2$ for $LiMn_2O_4:Al$ were analyzed 1.7 wt% by EDS. The $LiMn_2O_4:Al$ confirmed cubic spinel structure and approximately 5 ${\mu}m$ particles regardless of three kinds of doping process by solid state method. In the result of electrochemical performances, initial discharge capacity had 115 mAh/g in case of $LiMn_2O_4$ and 111 mAh/g of $LiMn_2O_4:Al$ after 100th cycle at room temperature. But the capacity retention results showed that $LiMn_2O_4$ and $LiMn_2O_4:Al$ were 44% and 69% respectively in the 100th cycle at 60$^{\circ}C$. Therefore we are confirmed that $LiMn_2O_4:Al$ increased the capacity retention about 25% than $LiMn_2O_4$, thus the effect of Al dopping on $LiMn_2O_4$ capacity retention.

The Effect of Reaction Temperature for Synthesis of LiMn2O4 by Calcination Process and the Electrochemical Characteristics (소성법에 의한 LiMn2O4의 제조시 반응 온도의 영향과 전기화학적 특성)

  • Lee, Chul-Tae;Lee, Jin-Sik;Kim, Hyun-Joong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.220-225
    • /
    • 1998
  • The spinel structured $LiMn_2O_4$ was prepared from $Li_2CO_3$ and $MnO_2$ by calcination at various temperatures in the range of $750{\sim}900^{\circ}C$. It was found that the most suitable cubic structure of $LiMn_2O_4$ was obtained by heating at $850^{\circ}C$ for 12 hrs. However, in the calcination at $900^{\circ}C$, $Mn^{4+}$ of 0.06M was changed to $Mn^{+3}$ by the oxygen loss, so that it has been shown that the formula has changed to $LiMn_2O_{3.97}$. This phenomena were in agreement with the Jahn-Teller distortion by the increment of $Mn^{+3}$ ion on the octahedral sites of the spinel structured $LiMn_2O_4$. The results showed that after 15 charge/discharge cycles in the voltage range from 3.5V to 4.3V versus Li/$Li^+$ with a current density of $0.25mA/cm^2$, the spinel structured $LiMn_2O_4$ that was prepared at $900^{\circ}C$ showed a lower discharge capacity, 82~50 mAh/g, while the $LiMn_2O_4$, prepared at $850^{\circ}C$, showed the discharge capacity of 102~64 mAh/g.

  • PDF

Stabilization of LiMn2O4 Electrode for Lithium Secondary Battery(I) - Electrode Characteristics on the Substitution of Metal Oxides in LiMn2O4 Cathode Material - (리튬이차전지용 정극활물질 LiMn2O4의 안정화(I) - LiMn2O4에 대한 금속산화물의 치환에 따른 전극 특성 -)

  • Lee, Jin-Sik;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.774-780
    • /
    • 1998
  • For the stabilization of the spinel structured $LiMn_2O_4$, a fraction of manganese was substituted with various metals such as Mg, Fe, V, W, Cr, Mo with Mn that had a similar ionic radii ($LiM_xMn_{2-x}O_4(0.05{\leq}x{\leq}0.02)$). The $LiM_xMn_{2-x}O_4$ showed a substantial improvement as lower capacity loss than that of the spinel structured $LiMn_2O_4$ when it was used as a cathode material. And with the partial substitution, the chemical diffusion coefficient for $LiMg_{0.05}Mn_{1.9}O_4$ and $LiCr_{0.1}Mn_{1.9}O_4$ was increased by and order of magnitude compared to that of the $LiMn_2O_4$ with spinel structure. The results showed that significant improvement can be made on the electrochemical characteristics as the structure of the $LiMn_2O_4$ electrode material was stabilized by the partial substitution.

  • PDF