• Title/Summary/Keyword: LI-6400

Search Result 11, Processing Time 0.034 seconds

Characteristics of soil respiration in Pinus densiflora stand undergoing secondary succession by fire-induced forest disturbance

  • Kim, Jeong-Seob;Lim, Seok-Hwa;Joo, Seung Jin;Shim, Jae-Kuk;Yang, Keum-Chul
    • Journal of Ecology and Environment
    • /
    • v.37 no.3
    • /
    • pp.113-122
    • /
    • 2014
  • The purpose of this study is to compare soil $CO_2$ efflux between burned and unburned sites dominated by Pinus densiflora forest in the Samcheok area where a big forest fire broke out along the east coast in 2000 and to measure soil $CO_2$ efflux and environmental factors between March 2011 and February 2012. Soil $CO_2$ efflux was measured with LI-6400 once a month; the soil temperature at 10 cm depth, air temperature, and soil moisture contents were measured in continuum. Soil $CO_2$ efflux showed the maximum value in August 2011 as 417.8 mg $CO_2m^{-2}h^{-1}$ (at burned site) and 1175.1 mg $CO_2m^{-2}h^{-1}$ (at unburned site), while it showed the minimum value as 41.4 mg $CO_2m^{-2}h^{-1}$ (at burned site) in December 2011 and 42.7 mg $CO_2m^{-2}h^{-1}$ (at unburned site) in February 2012. The result showed the high correlation between soil $CO_2$ efflux and the seasonal changes in temperature. More specifically, soil temperature showed higher correlation with soil $CO_2$ efflux in the burned site ($R^2$ = 0.932, P < 0.001) and the unburned site ($R^2$ = 0.942, P < 0.001) than the air temperature in the burned site ($R^2$ = 0.668, P < 0.01) and the unburned site ($R^2$ = 0.729, P < 0.001). $Q_{10}$ values showed higher sensitivity in the unburned site (4.572) than in the burned site (2.408). The total soil $CO_2$ efflux was obtained with the exponential function between soil $CO_2$ efflux and soil temperature during the research period, and it showed 2.5 times higher in the unburned site (35.59 t $CO_2ha^{-2}yr^{-1}$, 1 t = $10^3$ kg) than in the burned site (14.69 t $CO_2ha^{-2}yr^{-1}$).

Development of a Chinese cabbage model using Microsoft Excel/VBA (엑셀/VBA를 이용한 배추 모형 제작)

  • Moon, Kyung Hwan;Song, Eun Young;Wi, Seung Hwan;Oh, Sooja
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.228-232
    • /
    • 2018
  • Process-based crop models have been used to assess the impact of climate change on crop production. These models are implemented in procedural or object oriented computer programming languages including FORTRAN, C++, Delphi, Java, which have a stiff learning curve. The requirement for a high level of computer programming is one of barriers for efforts to develop and improve crop models based on biophysical process. In this study, we attempted to develop a Chinese cabbage model using Microsoft Excel with Visual Basic for Application (VBA), which would be easy enough for most agricultural scientists to develop a simple model for crop growth simulation. Results from Soil-Plant-Atmosphere-Research (SPAR) experiments under six temperature conditions were used to determine parameters of the Chinese cabbage model. During a plant growing season in SPAR chambers, numbers of leaves, leaf areas, growth rate of plants were measured six times. Leaf photosynthesis was also measured using LI-6400 Potable Photosynthesis System. Farquhar, von Caemmerer, and Berry (FvCB) model was used to simulate a leaf-level photosynthesis process. A sun/shade model was used to scale up to canopy-level photosynthesis. An Excel add-in, which is a small VBA program to assist crop modeling, was used to implement a Chinese cabbage model under the environment of Excel organizing all of equations into a single set of crop model. The model was able to simulate hourly changes in photosynthesis, growth rate, and other physiological variables using meteorological input data. Estimates and measurements of dry weight obtained from six SPAR chambers were linearly related ($R^2=0.985$). This result indicated that the Excel/VBA can be widely used for many crop scientists to develop crop models.

A Review on Soil Respiration Measurement and Its Application in Korea (토양호흡의 측정과 국내 연구 현황에 대한 고찰)

  • Lee, Eun-Hye;Lim, Jong-Hwan;Lee, Jae-Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.264-276
    • /
    • 2010
  • The objectives of this study were to introduce the methods of soil respiration measurement, to review soil respiration studies conducted in Korea, and to suggest potential issues generated from using various methods for soil respiration measurement. According to the measurement principles, the methods of soil respiration measurements are classified as: alkali absorption method (AA), closed chamber method (CC), closed dynamic chamber method (CDC), and open flow method (OF). Based on the litereaure review on soil respiration studies in Korea, the CDC method was mostly used by the researchers (62%), followed by the AA (17%), OF (13%) and CC (8%) methods. Along with these methods, various instruments were used such as LI-6400-09, EGM-3, EGM-4, and automatic soil respiration chamber. Most of the soil respiration measurements were carried out in forest ecosystems and the reported soil respiration showed a wide range of variations from 130 to 900 mg $CO_2\;m^{-2}h^{-1}$. Continuous monitoring of soil respiration with minimal disturbance and the potential inconsistency in measurements are still the challenges facing the researchers, causing a paucity in quality datasets of sufficient quantity. Few attempts of intercomparison among different methods hinder the data users from synthetic analysis and assessment of the collected datasets. In order to better estimate soil carbon budget and understand their exchange mechanisms in key ecosystems of Korea, it is necessary to measure soil respiration at various plant functional types, soils, and climate conditions over a decadal time scale along with the study on the partitioning of soil respiration into autotrophic and heteorotrophic components.

Effects of Chlorophyll Fluorescence and Photosynthesis Characteristics by Planting Positions and Growth Stage in Panax ginseng C. A. Meyer (인삼의 생육시기와 재식위치에 따른 엽록소 형광반응 및 광합성 특성)

  • Oh, Dong-Joo;Lee, Chung-Yeol;Kim, Seong-Man;Li, Guan-Ying;Lee, Su-Ji;Hwang, Dae-Yon;Son, Hong-Joo;Won, Jun-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.2
    • /
    • pp.65-69
    • /
    • 2010
  • As cool-season plant, Panax ginseng C. A. Meyer is planted under shade-installation with tall front and low rear. However, at different planting positions, distinct differences come out because ginseng grows at the same position within 3~5 years and the growth circumstance changes a lot by the shade-installation. So, in this study, changes of temperature, photosynthesis and chlorophyll fluorescence with varieties of shading material and planting position were investigated. Light transmittances by polyethylene shade net and silver-coated shading plate as planting materials were measured according to different planting positions. Photosynthetic rate and chlorophyll fluorescence were measured by LI-6400-40 (Li-Cor). According to different planting positions, light intensity was higher in silver-coated shading plate than in polyethylene shade net, and higher at front than rear. Also, photosynthetic rate showed the same tendency, which had a positive correlation to light intensity. But this treatment caused a lower Fo compared with polyethylene shade net because of the stress by light and temperature. Also, Fv/Fm and ETR were higher in silver-coated shading plate. Fo was similar at front and rear according to silver-coated shading plate and ETR was higher at front.

Sound Absorption Rate and Sound Transmission Loss of CLT Wall Panels Composed of Larch Square Timber Core and Plywood Cross Band

  • Kang, Chun Won;Jang, Sang Sik;Kang, Ho Yang;Li, Chengyuan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • The square timbers of larch having cross section of $90mm{\times}90mm$ were glued laterally to be formed $1,200mm{\times}2,400mm$ panels which were used as cores for CLT wall panels. Then, structural plywood panels having size of $1,200mm{\times}2,400mm$ were used as cross band covering the small square timber cores to manufacture CLT wall panels. The sound absorption rate of CLT wall panels and polyester board attached CLT wall panels were investigated. The mean sound absorption coefficients of the former and the latter in the frequency range of 100-6400 Hz were 0.21 and 0.74, respectively. The noise reduction coefficients (NRC) of those were 0.21 and 0.40, respectively. Also, the mean sound transmission loss of CLT wood panel in the frequency range of 50-1600 Hz was 45.12 dB and that value at the frequency of 500 Hz was 42.49 dB. It was suggested that the polyester board attached CLT wall panels could be used as housing wall because of its high sound absorption rate and high sound transmission loss.

Comparison of Carbon Storages, Annual Carbon Uptake and Soil Respiration to Planting Types in Urban Park - The Case Study of Dujeong Park in Cheonan City - (도시공원 식재유형별 탄소저장량, 연간 탄소흡수량 및 토양호흡량 비교 - 천안시 두정공원을 중심으로 -)

  • Han, Mi-Kyoung;Kim, Kyeong-Jin;Yang, Keum-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.2
    • /
    • pp.142-149
    • /
    • 2014
  • This study has compared carbon storages, annual carbon uptakes and annual soil respiration by planting type in Dujeong park, Cheonan city. Four plantations were selected in Dujeong park: Pinus densiflora plantation, Quercus acutissima community, Quercus acutissima-Robinia pseudoacacia plantation, and Robinia pseudoacacia plantation. We investigated each plantations from February 2012 to March 2013. Carbon storage and annual carbon uptake in each plantations were calculated with allometric method (Lee, 2003), and soil respiration was measured by using LI-6400 (LI-COR). Carbon storages in Pinus densiflora plantation, Quercus acutissima community, Quercus acutissima-Robinia pseudoacacia plantation, and Robinia pseudoacacia plantation were $17.36tonCha^{-1}$, $88.63tonCha^{-1}$, $115.38tonCha^{-1}$ and 4$9.88tonCha^{-1}$, and annual carbon uptakes were $1.04tonCha^{-1}yr^{-1}$, $2.12tonCha^{-1}yr^{-1}$, $6.47tonCha^{-1}yr^{-1}$ and $3.67tonCha^{-1}yr^{-1}$, respectively. Average annual carbon uptakes per tree of Pinus densiflora plantation, Quercus acutissima community and Robinia pseudoacacia plantation were $1.81kgC{\cdot}treeyr^{-1}$, $17.86kgC{\cdot}treeyr^{-1}$ and $9.14kgC{\cdot}treeyr^{-1}$ and Quercus acutissima was the greatest. The amounts of carbon released from soil respiration in the same four plantations were $2.20{\mu}molCO_2m^{-2}s^{-1}$, $1.90{\mu}molCO_2m^{-2}s^{-1}$, $2.47{\mu}molCO_2m^{-2}s^{-1}$ and $2.51{\mu}molCO_2m^{-2}s^{-1}$, and annual soil respiration were estimated $6.66tonCha^{-1}yr^{-1}$, $5.33tonCha^{-1}yr^{-1}$, $7.20tonCha^{-1}yr^{-1}$ and $7.25tonCha^{-1}yr^{-1}$, respectively. In this study area, Quercus acutissima-Robinia pseudoacacia plantation has a significant contribution to the role of carbon sink. However, the contribution of Pinus densiflora plantation was evaluated less. The results of this study can be used as the necessary data for tree planting and management in urban park.

Quantitative Measurement of Carbon Dioxide Consumption of a Whole Paprika Plant (Capsicum annumm L.) Using a Large Sealed Chamber (대형 밀폐 챔버를 이용한 파프리카(Capsicum annumm L.) 개체의 이산화탄소 소비량 측정 및 정량화)

  • Shin, Jong-Hwa;Ahn, Tae-In;Son, Jung-Eek
    • Horticultural Science & Technology
    • /
    • v.29 no.3
    • /
    • pp.211-216
    • /
    • 2011
  • This study was carried out to clarify precise $CO_2$ demands of paprika plants (Capsicum annumm L.) by measuring photosynthesis rates of the leaves in high, low positions, and the $CO_2$ consumption of a whole plant in a large sealed chamber. A photosynthesis measuring system (LI-6400) was used to measure the photosynthetic rates of the leaves located in different positions. A large sealed chamber that can control inside environmental factors was developed for measuring $CO_2$ consumption by a whole paprika plant. With increase of radiation, photosynthetic rates of the leaves in higher position became larger than those in lower position. The $CO_2$ consumption by the plant was estimated by using decrement of $CO_2$ concentration from initial level of 1500 ${\mu}mol{\cdot}mol^{-1}$ in the chamber with increase of integrated radiation. A regression model for estimating $CO_2$ consumption by the plant (leaf area = 7,533.4 $cm^2$) was expressed with integrated radiation (x) and was suggested as $y=-0.06234+3.671^*x/(2.589+x)$ ($R^2=0.9966^{***}$). The photosynthetic rate of the whole plant measured in the chamber was 3.4 ${\mu}mol\;CO_2{\cdot}m^{-2}{\cdot}s^{-1}$ under 300 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ light intensity, which is in-between photosynthetic rates of the leaves in high and low positions. For this reason, some differences between required and supplied $CO_2$ amounts in greenhouses might occur when depending too much on photosynthetic rates of leaves. Therefore, we can estimate more accurately $CO_2$ amount required in commercial greenhouses by using $CO_2$ consumption model of a whole plant obtained in this study in addition to leaf photosynthetic rate.

Elucidation of the physiological basis related to high photosynthetic capacity of soybean local variety, 'Peking'.

  • Sakoda, Kazuma;Suzuki, Seita;Tanaka, Yu;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.239-239
    • /
    • 2017
  • The enhancement of leaf photosynthetic capacity can have the potential to improve the seed yield of soybean. Key targets for the increase of leaf photosynthetic capacity remains unclear in soybean. Peking, Chinese local variety, has been the useful material for soybean breeding since it shows various resistances against biotic and abiotic stress. Sakoda et al., 2017 reported that Peking had the higher capacity of leaf photosynthesis than Enrei, Japanese elite cultivar. They identified the genetic factors related to high photosynthetic capacity of Peking. The objective of this study is to elucidate the physiological basis underlying high photosynthetic capacity of Peking. Peking and Enrei were cultivated at the experimental field of the Graduate School of Agriculture, Kyoto University, Kyoto, Japan. The sowing date was July 4, 2016. Gas exchange parameters were evaluated at the uppermost fully expanded leaves on 43, 49, and 59 days after planting (DAP) with a portable gas exchange system, LI-6400. The leaf hydraulic conductance, $K_{leaf}$, was determined based on the water potential and transpiration rate of the uppermost fully expanded leaves on 60 DAP. The morphological traits related to leaf photosynthesis were analyzed at the same leaves with the gas exchange measurements. The light-saturated $CO_2$ assimilation rate ($A_{sat}$) of Peking was significantly higher than that of Enrei at 43 and 59 DAP while the stomatal conductance ($g_s$) of Peking was significantly higher at all the measurements (p < 0.05). It suggested that high $A_{sat}$ was mainly attributed to high $g_s$ in Peking. $g_s$ is reported to be affected by the morphological traits and water status inside the leaf, represented by $K_{leaf}$, in crop plants. The tendency of the variation of the stomatal density between two cultivars was not consistent throughout the measurements. On the other hand, $K_{leaf}$ of Peking was 59.0% higher than that of Enrei on 60 DAP. These results imply that high $g_s$ might be attributed to high $K_{leaf}$ in Peking. Further research is needed to reveal the mechanism to archive high $g_s$ on the basis of water physiology in Peking. The knowledge combining the genetic and physiological basis underlying high photosynthetic capacity of Peking can be useful to improve the biomass productivity of soybean.

  • PDF

Carbon Budget of Pine Forest in Serpentine Area (사문암 지역 소나무림의 탄소수지 연구)

  • Yang, Keum-Chul;Namkung, Hyunmin;Kim, Jeong-Seob;Han, Mi-Kyoung;Shim, Jae-Kuk
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.6
    • /
    • pp.676-685
    • /
    • 2018
  • This study is to compare carbon budget between serpentine sites and non-serpentine sites dominated by Pinus densiflora forest in the Andong serpentine area where has high values of magnesium and low values of calcium, and are usually deficient in nitrogen and phosphorus, but rich in heavy metals such as nickel, chrome, cobalt, etc. and to measure soil $CO_2$ efflux and environmental factors between January 2017 and December 2017. Soil $CO_2$ efflux was measured with LI-6400 once a month; the soil temperature at 10 cm depth, air temperature, soil moisture contents, and solar radiation were measured in continuum. Soil $CO_2$ efflux in the serpentine area and non-serpentine were $151.71{\pm}75.09g\;CO_2{\cdot}m^{-2}month^{-1}$(42.48 ~ 262.61 g $CO_2{\cdot}m^{-2}month^{-1}$) and $165.09{\pm}118.96g\;CO_2{\cdot}m^{-2}month^{-1}$(20.94 ~ 449.24 g $CO_2{\cdot}m^{-2}month^{-1}$), respectively. Carbon storage in the serpentine area and non-serpentine area were 91.90, $222.85ton{\cdot}ha^{-1}$, respectively. Carbon absorption in the serpentine area and non-serpentine area were 7.99, $17.41ton{\cdot}ha^{-1}yr^{-1}$, respectively. Carbon budget in the serpentine area and non-serpentine area were absorbs 5.3, $14.49ton{\cdot}Cha^{-1}yr^{-1}$, respectively.

Plant Physiological Responses in Relation to Temperature, Light Intensity, and CO2 Concentration for the Selection of Efficient Foliage Plants on the Improvement of Indoor Environment (실내 환경 개선에 적합한 식물 선발을 위한 온도, 광도, 이산화탄소 농도에 따른 관엽식물들의 생리적 반응)

  • Park, Sin-Ae;Kim, Min-Gi;Yoo, Mung-Hwa;Oh, Myung-Min;Son, Ki-Cheol
    • Horticultural Science & Technology
    • /
    • v.28 no.6
    • /
    • pp.928-936
    • /
    • 2010
  • This study was conducted to select efficient foliage plants for improving indoor environment conditions through the investigation of physiological responses including photosynthetic rate according to temperature, light intensity, and $CO_2$ level. Eight popular foliage plants used in this study were $Hedera$ $helix$ L., $Cissus$ $rhombifolia$ Vahl, $Ficus$ $benjamina$ L. 'Hawaii', $Syngonium$ $podophyllum$ Schott 'Albo-Virens', $Dieffenbachia$ $sp.$ 'Marrianne', $Pachira$ $aquatica$ Aubl., $Spathiphyllum$ $wallisii$ Regel, and $Scindapsus$ $aureus$ Engler. Photosynthetic rate and transpiration rate of the plants subjected to various light intensities (0, 25, 50, 75, 100, 150, 300, and $600{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD), $CO_2$ levels (0, 50, 100, 200, 400, 700, and $1,000{\mu}molCO_2{\cdot}mol^{-1}$), and two different temperatures (16 and $22^{\circ}C$) were measured. In addition, various parameters in relation to photosynthesis were calculated from the measured data. As a result, the patterns of photosynthesis varied among 8 foliage plants according to light intensity, $CO_2$ level, and temperature. Most foliage plants except $Dieffenbachia$ had high levels of apparent quantum yield, which represents the photosynthetic rate under low light intensity (PPFD $0-100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). $Hedera$ $helix$, $Ficus$ $benjamina$, $Pachira$ $aquatica$, and $Spathiphyllum$ $wallisii$ exposed to high light intensity (PPFD $200-600{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) showed high levels of photosynthesis. $Cissus$ $rhombifolia$ and $Syngonium$ $podophyllum$ were low in $CO_2$ fixation efficiency compared to the other 6 foliage indoor plants. $Hedera$ $helix$ and $Spathiphyllum$ $wallisii$ showed high photosynthetic rate under high $CO_2$ level and vigorous photosynthesis was also observed in $Ficus$ $benjamina$ and $Pachira$ $aquatica$ grown under $22^{\circ}C$. Considering characteristics of indoor environment such as low light, high $CO_2$ level, and low relative humidity, therefore, $Hedera$ $helix$, $Spathiphyllum$ $wallisii$, $Ficus$ $benjamina$, and $Pachira$ $aquatica$ were efficient indoor foliage plants to improve indoor environmental conditions.