• Title/Summary/Keyword: LI-4 pressure

Search Result 208, Processing Time 0.024 seconds

Diffusion-hydraulic properties of grouting geological rough fractures with power-law slurry

  • Mu, Wenqiang;Li, Lianchong;Liu, Xige;Zhang, Liaoyuan;Zhang, Zilin;Huang, Bo;Chen, Yong
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.357-369
    • /
    • 2020
  • Different from the conventional planar fracture and simplified Newton model, for power-law slurries with a lower water-cement ratio commonly used in grouting engineering, flow model in geological rough fractures is built based on ten standard profiles from Barton (1977) in this study. The numerical algorithm is validated by experimental results. The flow mechanism, grout superiority, and water plugging of pseudo plastic slurry are revealed. The representations of hydraulic grouting properties for JRCs are obtained. The results show that effective plugging is based on the mechanical mechanisms of the fluctuant structural surface and higher viscosity at the middle of the fissure. The formulas of grouting parameters are always variable with the roughness and shear movement, which play a key role in grouting. The roughness can only be neglected after reaching a threshold. Grouting pressure increases with increasing roughness and has variable responses for different apertures within standard profiles. The whole process can be divided into three stationary zones and three transition zones, and there is a mutation region (10 < JRCs < 14) in smaller geological fractures. The fitting equations of different JRCs are obtained of power-law models satisfying the condition of -2 < coefficient < 0. The effects of small apertures and moderate to larger roughness (JRCs > 10.8) on the permeability of surfaces cannot be underestimated. The determination of grouting parameters depends on the slurry groutability in terms of its weakest link with discontinuous streamlines. For grouting water plugging, the water-cement ratio, grouting pressure and grouting additives should be determined by combining the flow conditions and the apparent widths of the main fracture and rough surface. This study provides a calculation method of grouting parameters for variable cement-based slurries. And the findings can help for better understanding of fluid flow and diffusion in geological fractures.

Preparation of highly hydrophobic PVDF hollow fiber composite membrane with lotus leaf-like surface and its desalination properties

  • Li, Hongbin;Zi, Xingchen;Shi, Wenying;Qin, Longwei;Zhang, Haixia;Qin, Xiaohong
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.287-298
    • /
    • 2019
  • Lotus leaf has a special dual micro and nano surface structure which gives its highly hydrophobic surface characteristics and so-called self cleaning effect. In order to endow PVDF hollow fiber membrane with this special structure and improve the hydrophobicity of membrane surface, PVDF hollow fiber composite membranes was obtained through the immersion coating of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) dilute solution on the outside surface of PVDF support membrane. The prepared PVDF composite membranes were used in the vacuum membrane distillation (VMD) for the desalination. The effects of PVDF-HFP dilute solution concentration in the dope solution and coating time on VMD separation performance was studied. Membranes were characterized by SEM, WCA measurement, porosity, and liquid entry pressure of water. VMD test was carried out using $35g{\cdot}L^{-1}$ NaCl aqueous solution as the feed solution at feed temperature of $30^{\circ}C$ and the permeate pressure of 31.3 kPa. The vapour flux reached a maximum when PVDF-HFP concentration in the dilute solution was 5 wt% and the coating time was kept in the range of 10-60 s. This was attributed to the well configuration of micro-nano rods which was similar with the dual micro-nano structure on the lotus leaf. Compared with the original PVDF membrane, the salt rejection can be well maintained which was greater than 99.99 % meanwhile permeation water conductivity was kept at a low value of $7-9{\mu}S{\cdot}cm^{-1}$ during the continuous testing for 360 h.

Experimental research on design wind loads of a large air-cooling structure

  • Yazhou, Xu;Qianqian, Ren;Guoliang, Bai;Hongxing, Li
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.215-224
    • /
    • 2019
  • Because of the particularity and complexity of direct air-cooling structures (ACS), wind parameters given in the general load codes are not suitable for the wind-resistant design. In order to investigate the wind loads of ACS, two 1/150 scaled three-span models were designed and fabricated, corresponding to a rigid model and an aero-elastic model, and wind tunnel tests were then carried out. The model used for testing the wind pressure distribution of the ACS was defined as the rigid model in this paper, and the stiffness of which was higher than that of the aero-elastic model. By testing the rigid model, the wind pressure distribution of the ACS model was studied, the shape coefficients of "A" shaped frame and windbreak walls, and the gust factor of the windbreak walls were determined. Through testing the aero-elastic model, the wind-induced dynamic responses of the ACS model was studied, and the wind vibration coefficients of ACS were determined based on the experimental displacement responses. The factors including wind direction angle and rotation of fan were taken into account in this test. The results indicated that the influence of running fans could be ignored in the structural design of ACS, and the wind direction angle had a certain effect on the parameters. Moreover, the shielding effect of windbreak walls induced that wind loads of the "A" shaped frame were all suction. Subsequently, based on the design formula of wind loads in accordance with the Chinese load code, the corresponding parameters were presented as a reference for wind-resistant design and wind load calculation of air-cooling structures.

Whole-life wind-induced deflection of insulating glass units

  • Zhiyuan Wang;Junjin Liu;Jianhui Li;Suwen Chen
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.289-302
    • /
    • 2023
  • Insulating glass units (IGUs) have been widely used in buildings in recent years due to their superior thermal insulation performance. However, because of the panel reciprocating motion and fatigue deterioration of sealants under long-term wind loads, many IGUs have the problem of early failure of watertight properties in real usage. This study aimed to propose a statistical method for wind-induced deflection of IGU panels during the whole life service period, for further precise analysis of the accumulated fatigue damage at the sealed part of the edge bond. By the estimation of the wind occurrence regularity based on wind pressure return period, the events of each wind speed interval during the whole life were obtained for the IGUs at 50m height in Beijing, which are in good agreement with the measured data. Also, the wind-induced deflection analysis method of IGUs based on the formula of airspace coefficient was proposed and verified as an improvement of the original stiffness distribution method with the average relative error compared to the test being about 3% or less. Combining the two methods above, the deformation of the outer and inner panes under wind loads during 30 years was precisely calculated, and the deflection and stress state at selected locations were obtained finally. The results show that the compression displacement at the secondary sealant under the maximum wind pressure is close to 0.3mm (strain 2.5%), and the IGUs are in tens of thousands of times the low amplitude tensile-compression cycle and several times to dozens of times the relatively high amplitude tensile-compression cycle environment. The approach proposed in this paper provides a basis for subsequent studies on the durability of IGUs and the wind-resistant behaviors of curtain wall structures.

Comparison of RANS, URANS, SAS and IDDES for the prediction of train crosswind characteristics

  • Xiao-Shuai Huo;Tang-Hong Liu;Zheng-Wei Chen;Wen-Hui Li;Hong-Rui Gao;Bin Xu
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.303-314
    • /
    • 2023
  • In this study, two steady RANS turbulence models (SST k-ω and Realizable k-ε) and four unsteady turbulence models (URANS SST k-ω and Realizable k-ε, SST-SAS, and SST-IDDES) are evaluated with respect to their capacity to predict crosswind characteristics on high-speed trains (HSTs). All of the numerical simulations are compared with the wind tunnel values and LES results to ensure the accuracy of each turbulence model. Specifically, the surface pressure distributions, time-averaged aerodynamic coefficients, flow fields, and computational cost are studied to determine the suitability of different models. Results suggest that the predictions of the pressure distributions and aerodynamic forces obtained from the steady and transient RANS models are almost the same. In particular, both SAS and IDDES exhibits similar predictions with wind tunnel test and LES, therefore, the SAS model is considered an attractive alternative for IDDES or LES in the crosswind study of trains. In addition, if the computational cost needs to be significantly reduced, the RANS SST k-ω model is shown to provide relatively reasonable results for the surface pressures and aerodynamic forces. As a result, the RANS SST k-ω model might be the most appropriate option for the expensive aerodynamic optimizations of trains using machine learning (ML) techniques because it balances solution accuracy and resource consumption.

A Novel Method to Fabricate Tough Cylindrical Ti2AlC/Graphite Layered Composite with Improved Deformation Capacity

  • Li, Aijun;Chen, Lin;Zhou, Yanchun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.369-374
    • /
    • 2012
  • Based on the structure feature of a tree, a cylindrical $Ti_2AlC$/graphite layered composite has been fabricated through heat treating a graphite column and six close-matched thin wall $Ti_2AlC$ cylinders bonded with the $Ti_2AlC$ powders at $1300^{\circ}C$ and low oxygen partial pressure. SEM examination reveals that the bond interlayers between cylinders or that between cylinder and column are not fully dense without any crack formation. During the compressive test, the strain of the $Ti_2AlC$/graphite layered composite is about twice higher than that of the monolithic $Ti_2AlC$ ceramic, and the compressive strength of the layered composite is 348 MPa. The layered composite show the noncatastrophic fracture behaviors due to the debonding and shelling off of the layers, which are different from the monolithic $Ti_2AlC$ ceramic. The mechanism of the improved deformation capacity and noncatastrophic failure modes are attributed to the presence of the central soft graphite column and cracks deflection by the bond interlayers.

Wind-rain-induced vibration test and analytical method of high-voltage transmission tower

  • Li, Hong-Nan;Tang, Shun-Yong;Yi, Ting-Hua
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.435-453
    • /
    • 2013
  • A new computational approach for the rain load on the transmission tower is presented to obtain the responses of system subjected to the wind and rain combined excitations. First of all, according to the similarity theory, the aeroelastic modeling of high-voltage transmission tower is introduced and two kinds of typical aeroelastic models of transmission towers are manufactured for the wind tunnel tests, which are the antelope horn tower and pole tower. And then, a formula for the pressure time history of rain loads on the tower structure is put forward. The dynamic response analyses and experiments for the two kinds of models are carried out under the wind-induced and wind-rain-induced actions with the uniform and turbulent flow. It has been shown that the results of wind-rain-induced responses are bigger than those of only wind-induced responses and the rain load influence on the transmission tower can't be neglected during the strong rainstorm. The results calculated by the proposed method have a good agreement with those by the wind tunnel test. In addition, the wind-rain-induced responses along and across the wind direction are in the same order of response magnitude of towers.

The effects of buffer layer using $\alpha$-septithiophene on the organic light emitting diode (유기 전기 발광 소자에서 $\alpha$-septithiophene을 이용한 buffer layer의 영향)

  • Yi, Ki-Wook;Lim, Sung-Taek;Shin, Dong-Myung;Park, Jong-Wook;Park, Ho-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.53-56
    • /
    • 2002
  • The effect of $\alpha$-septithiophene (${\alpha}-7T$) layers on the organic light emitting diode(OLED) was studied. The ${\alpha}-7T$ was used for a buffer layer in OLED. Hole injection was investigated and improved emission efficiency. The OLEDs structure can be described as indium tin oxide(ITO)/ buffer layer / hole transporting layer / emitting layer / electron transporting layer / LiF / Al. The hole transporting layer were composed of N,N-diphenyl-N,N-di(3-methylphenyl)-1,1-biphenyl-4,4-diamine(TPD), and N,N-di(naphthalene-1-ly)-N,N-diphenyl-benzidine( ${\alpha}$-NPD). The emitting layer, and electron transporting layer consist of tris(8-hydroxyquinolinato) aluminum($Alq_3$). All organic layer were deposited at a background pressure of less than $10^{-6}$ torr using ultra high vacuum (UHV) system. The ${\alpha}-7T$ layer can substitute the hole blocking layer, and improve hole injection properties.

  • PDF

Shotcrete-Retrofit of Shear Walls with an Opening (개구부를 가지는 전단벽의 숏크리트 보강)

  • Choi, Youn-Cheul;Choi, Chang-Sik;Kim, Hyun-Min;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.71-80
    • /
    • 2007
  • Because of the characteristics relating to high tensile ductility, High Performance Fiber Reinforced Cementitious Composites (HPFRCC) are studied to be adopted in repair and retrofit of buildings. A series of three shear wall specimens was tested under constant axial stress and reversed cyclic lateral loading in order to evaluate the seismic retrofit that had been proposed for the shear wall with the opening. The retrofit involved the use of newly developed ECC and MDF(Macro Defect Free), both of which are sprayed through the high pressure pump, over the entire face of the wall. The results indicate that two difference types of retrofitting strategy make the different effects of a rise in the strength and ductility of each specimen.

Developments and applications of a modified wall function for boundary layer flow simulations

  • Zhang, Jian;Yang, Qingshan;Li, Q.S.
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.361-377
    • /
    • 2013
  • Wall functions have been widely used in computational fluid dynamics (CFD) simulations and can save significant computational costs compared to other near-wall flow treatment strategies. However, most of the existing wall functions were based on the asymptotic characteristics of near-wall flow quantities, which are inapplicable in complex and non-equilibrium flows. A modified wall function is thus derived in this study based on flow over a plate at zero-pressure gradient, instead of on the basis of asymptotic formulations. Turbulent kinetic energy generation ($G_P$), dissipation rate (${\varepsilon}$) and shear stress (${\tau}_{\omega}$) are composed together as the near-wall expressions. Performances of the modified wall function combined with the nonlinear realizable k-${\varepsilon}$ turbulence model are investigated in homogeneous equilibrium atmosphere boundary layer (ABL) and flow around a 6 m cube. The computational results and associated comparisons to available full-scale measurements show a clear improvement over the standard wall function, especially in reproducing the boundary layer flow. It is demonstrated through the two case studies that the modified wall function is indeed adaptive and can yield accurate prediction results, in spite of its simplicity.