• Title/Summary/Keyword: LG way

Search Result 103, Processing Time 0.018 seconds

The Effect on Muscle Activation in Trunk and Low-limbs during Squat Exercise on Various Instability Surface (다양한 불안정면에서의 스쿼트 운동이 체간 및 하지 근육 활성도에 미치는 영향)

  • Choi, Nam-Young;Jang, Hee-Seung;Shin, Yun-A
    • 한국체육학회지인문사회과학편
    • /
    • v.54 no.1
    • /
    • pp.505-514
    • /
    • 2015
  • The purpose of this study was to examine the muscle activation in trunk and low-limbs muscle during squat exercise on various instability surface. 10 subject performed squat with 75% of 1 repetition maximum (1RM) on a stable floor, stability blue, stability black and BOSU. Electromyographic (EMG) activity was measured trunk muscle such as rectus abdomina (RA), external obliques (EO), internal obliques (IO), multifidus (MF), and low-limbs muscle such as gluteus maximus (GMA), gluteus medius (GME), biceps femoris (BF), rectus femoris (RF), vastus medialis oblique (VMO), vastus lateral oblique (VLO), medialis gastrocnemius (MG), lateral gastrocnemius (LG), soleus (SOL) and anterior tibia (AT) when ascending and descending squat phase. One-way ANOVA repeated measure with Sheffe used to compare the muscle activity on the stable and unstable surface. Squat with BOSU ball induces higher muscle activity of IO, MF, GMA and GME compared with stability and stability blue and blackduring descending motion. Squat with BOSU ball induces higher muscle activity of GMA compared with stability and stability blue and blackduring ascending motion. This results suggested that BOSU ball in the squat could be effective increasing of trunk stability and gluteal muscle activity. However, there was no difference of squat on low-limb muscle with or without instability.

Public Sentiment Analysis of Korean Top-10 Companies: Big Data Approach Using Multi-categorical Sentiment Lexicon (국내 주요 10대 기업에 대한 국민 감성 분석: 다범주 감성사전을 활용한 빅 데이터 접근법)

  • Kim, Seo In;Kim, Dong Sung;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.45-69
    • /
    • 2016
  • Recently, sentiment analysis using open Internet data is actively performed for various purposes. As online Internet communication channels become popular, companies try to capture public sentiment of them from online open information sources. This research is conducted for the purpose of analyzing pulbic sentiment of Korean Top-10 companies using a multi-categorical sentiment lexicon. Whereas existing researches related to public sentiment measurement based on big data approach classify sentiment into dimensions, this research classifies public sentiment into multiple categories. Dimensional sentiment structure has been commonly applied in sentiment analysis of various applications, because it is academically proven, and has a clear advantage of capturing degree of sentiment and interrelation of each dimension. However, the dimensional structure is not effective when measuring public sentiment because human sentiment is too complex to be divided into few dimensions. In addition, special training is needed for ordinary people to express their feeling into dimensional structure. People do not divide their sentiment into dimensions, nor do they need psychological training when they feel. People would not express their feeling in the way of dimensional structure like positive/negative or active/passive; rather they express theirs in the way of categorical sentiment like sadness, rage, happiness and so on. That is, categorial approach of sentiment analysis is more natural than dimensional approach. Accordingly, this research suggests multi-categorical sentiment structure as an alternative way to measure social sentiment from the point of the public. Multi-categorical sentiment structure classifies sentiments following the way that ordinary people do although there are possibility to contain some subjectiveness. In this research, nine categories: 'Sadness', 'Anger', 'Happiness', 'Disgust', 'Surprise', 'Fear', 'Interest', 'Boredom' and 'Pain' are used as multi-categorical sentiment structure. To capture public sentiment of Korean Top-10 companies, Internet news data of the companies are collected over the past 25 months from a representative Korean portal site. Based on the sentiment words extracted from previous researches, we have created a sentiment lexicon, and analyzed the frequency of the words coming up within the news data. The frequency of each sentiment category was calculated as a ratio out of the total sentiment words to make ranks of distributions. Sentiment comparison among top-4 companies, which are 'Samsung', 'Hyundai', 'SK', and 'LG', were separately visualized. As a next step, the research tested hypothesis to prove the usefulness of the multi-categorical sentiment lexicon. It tested how effective categorial sentiment can be used as relative comparison index in cross sectional and time series analysis. To test the effectiveness of the sentiment lexicon as cross sectional comparison index, pair-wise t-test and Duncan test were conducted. Two pairs of companies, 'Samsung' and 'Hanjin', 'SK' and 'Hanjin' were chosen to compare whether each categorical sentiment is significantly different in pair-wise t-test. Since category 'Sadness' has the largest vocabularies, it is chosen to figure out whether the subgroups of the companies are significantly different in Duncan test. It is proved that five sentiment categories of Samsung and Hanjin and four sentiment categories of SK and Hanjin are different significantly. In category 'Sadness', it has been figured out that there were six subgroups that are significantly different. To test the effectiveness of the sentiment lexicon as time series comparison index, 'nut rage' incident of Hanjin is selected as an example case. Term frequency of sentiment words of the month when the incident happened and term frequency of the one month before the event are compared. Sentiment categories was redivided into positive/negative sentiment, and it is tried to figure out whether the event actually has some negative impact on public sentiment of the company. The difference in each category was visualized, moreover the variation of word list of sentiment 'Rage' was shown to be more concrete. As a result, there was huge before-and-after difference of sentiment that ordinary people feel to the company. Both hypotheses have turned out to be statistically significant, and therefore sentiment analysis in business area using multi-categorical sentiment lexicons has persuasive power. This research implies that categorical sentiment analysis can be used as an alternative method to supplement dimensional sentiment analysis when figuring out public sentiment in business environment.

Implementing RPA for Digital to Intelligent(D2I) (디지털에서 인텔리전트(D2I)달성을 위한 RPA의 구현)

  • Dong-Jin Choi
    • Information Systems Review
    • /
    • v.21 no.4
    • /
    • pp.143-156
    • /
    • 2019
  • Types of innovation can be categorized into simplification, information, automation, and intelligence. Intelligence is the highest level of innovation, and RPA can be seen as one of intelligence. Robotic Process Automation(RPA), a software robot with artificial intelligence, is an example of intelligence that is suited for simple, repetitive, large-scale transaction processing tasks. The RPA, which is already in operation in many companies in Korea, shows what needs to be done to naturally focus on the core tasks in a situation where the need for a strong organizational culture is increasing and the emphasis is on voluntary leadership, strong teamwork and execution, and a professional working culture. The introduction was considered naturally according to the need to find. Robotic Process Automation, or RPA, is a technology that replaces human tasks with the goal of quickly and efficiently handling structural tasks. RPA is implemented through software robots that mimic humans using software such as ERP systems or productivity tools. RPA robots are software installed on a computer and are called robots by the principle of operation. RPA is integrated throughout the IT system through the front end, unlike traditional software that communicates with other IT systems through the back end. In practice, this means that software robots use IT systems in the same way as humans, repeat the correct steps, and respond to events on the computer screen instead of communicating with the system's application programming interface(API). Designing software that mimics humans to communicate with other software can be less intuitive, but there are many advantages to this approach. First, you can integrate RPA with virtually any software you use, regardless of your openness to third-party applications. Many enterprise IT systems are proprietary because they do not have many common APIs, and their ability to communicate with other systems is severely limited, but RPA solves this problem. Second, RPA can be implemented in a very short time. Traditional software development methods, such as enterprise software integration, are relatively time consuming, but RPAs can be implemented in a relatively short period of two to four weeks. Third, automated processes through software robots can be easily modified by system users. While traditional approaches require advanced coding techniques to drastically modify how they work, RPA can be instructed by modifying relatively simple logical statements, or by modifying screen captures or graphical process charts of human-run processes. This makes RPA very versatile and flexible. This RPA is a good example of the application of digital to intelligence(D2I).