• Title/Summary/Keyword: LES Simulation

Search Result 427, Processing Time 0.027 seconds

Construction of Virtual Images for a Benchmark Test of 3D-PTV Algorithms for Flows

  • Hwang, Tae-Gyu;Doh, Deog-Hee;Hong, Seong-Dae;Kenneth D. Kihm
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1185-1194
    • /
    • 2004
  • Virtual images for PIV are produced for the construction of a benchmark test tool of PTV systems, Camera parameters obtained by an actual experiment are used to construct the virtual images, LES(Large Eddy Simulation) data sets of a channel flow are used for generation of the virtual images, Using the virtual images and the camera's parameters. three-dimensional velocity vectors are obtained for a channel flow. The capabilities of a 3D-PTV algorithm are investigated by comparing the results obtained by the virtual images and those by an actual measurement for the channel flow.

A Numerical Study for the Three-Dimensional Fluid Flow Past Tube Banks and Comparison with PIV Experimental Data

  • Ha, Man-Yeong;Kim, Seung-Hyeon;Kim, Kyung-Chun;Son, Young-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2236-2249
    • /
    • 2004
  • The analysis for the three-dimensional fluid flow past tube banks arranged in equilateral-triangular form at Re$\_$max/=4,000 is carried out using a large eddy simulation technique. The governing equations for the mass and momentum conservation are discretized using the finite volume method. Parallel computational techniques using MPI (Message Passing Interface) are implemented in the present computer code. The computation time decreases linearly proportional to the number of used CPUs in the present parallel computation. We obtained the time-averaged streamwise and cross-streamwise velocities and turbulent intensities. The present numerical results are compared with the PIV experimental data and agree generally well with the experimental data.

Parallel Simulation of Turbulent Flow in a 3-D Lid-Driven Cavity

  • McDonough J.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.163-166
    • /
    • 2006
  • We have introduced a new version of the 3-D lid-driven cavity problem that leads to more complicated fluid parcel trajectories and thus, enhanced mixing, but at the same time weakens corner singularities. We employed an advanced form of LES to solve this problem and presented preliminary results that show very complicated streamline structures on both large and small scales, despite a relatively low Reynolds number. Finally, we demonstrated moderate speedups via parallelization. Ongoing tests are expected to resolve the questions raised regarding possible sources of the rather poor parallel performance compared with that seen in earlier studies with the same code. Because it is expected that findings may be significant for parallel performance in general, we plan to emphasize this aspect in the oral presentation the Parrel (CFD 2006 Conference.

  • PDF

The aero-acoustic noise reduction based on biomimetics : A case study (생체모방공학을 이용한 공력 소음 저감 기초 연구)

  • Han, Jae-H.;Kim, Tae-M.;Kim, Jung-S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.144-151
    • /
    • 2011
  • Recent years have witnessed speed up of moving vehicles such as high-speed of trains. Increase in speed entails concomitant increase in turbulent air flow which contributes toward aerodynamic noise. The proposed method for aerodynamic noise reduction is based on a biomimetic design of owl feather. The five morphological parameters of the owl feather is extracted from close observation, and simulation cases are constructed by applying design of experiments methodology. Swirling strength for each case is obtained through steady-state CFD analysis, and key morphological parameters that affect the turbulence are identified. Large eddy simulations (LES) are then performed on selected cases to predict the air turbulence. Different cases show varying vorticity distribution levels which is expected to lead to varying aerodynamic noise levels.

  • PDF

Analysis of Smoke Spread Effect Due to The Ventilation Capability in Underground Subway-Station (대심도 역사의 제연팬 용량에 따른 연기확산 영향 분석)

  • Koo, In-Hyuk;Jang, Yong-Jun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.424-427
    • /
    • 2012
  • 본 연구에서는 최근 증가하고 있는 대심도역사의 제연팬 용량에 따른 연기확산영향에 대하여 분석하였다. 시뮬레이션모델은 신금호 역사(5호선, 깊이 46m)를 대상으로 하였으며, 제연팬 용량에 따른 연기확산 영향을 분석 하였다. 현장조사 및 실측을 통하여 계측된 실제 역사의 제연팬에 관한 데이터를 화재시뮬레이션 조건으로 적용하였다. 역사전체를 해석 대상으로 하여 총 400만개의 격자를 사용하였으며, 제연팬 용량에 따른 연기확산 영향 비교를 위하여 화재 시나리오를 작성하여 Case별로 화재해석을 수행하였다. 계산 효율을 높이기 위하여 MPI병렬처리기법을 사용하였으며 해석코드는 LES(large eddy simulation) 기법을 주로 사용하는 FDS5 code를 사용하였다.

  • PDF

A Study on the Flow Characteristics in Urban Stream Using 3-D Numerical Model (3차원 수치모형을 이용한 도시하천의 흐름특성에 관한 연구)

  • Yoon, Sun-Kwon;Kim, Jong-Suk;Moon, Young-Il;Lee, Il-Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1287-1292
    • /
    • 2007
  • Recently, the frequency of unexpecting heavy rains has been increased due to abnormal climate and extreme rainfall. There was a limit to analyze 1D or 2D stream flow that was applied simple momentum equation and fixed energy conservation. Therefore, hydrodynamics flow analysis in rivers has been needed 3D numerical analysis for correct stream flow interpretation. In this study, CFD model on FLOW-3D was applied to stream flow analysis, which solves three dimenson RANS(Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behavior and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as ${\kappa}-{\varepsilon}$, RNG ${\kappa}-{\varepsilon}$ and LES. Those numerical analysis results have been illustrated by the turbulence energy effects, velocity of flow distributions, water level pressure distributions and eddy flows around the piers at Jangwall bridge in urbarn stream.

  • PDF

Application of the Outdoor Air Temperature Prediction Control for Intermittent Heating Residences (간헐난방주택에 대한 외기온도 예측제어 적용 연구)

  • 태춘섭;조성환;이충구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.682-691
    • /
    • 2001
  • Most of radiant floor heating systems are operated in the intermittent heating mode in Korea. The application possibility of predictive suboptimal control for Koran residential house was investigated by computer simulation and experiment. For this study, TRNSYS program was used and an experimental facility consisting of tow rooms ($3\times4.4\times2.8 m$) identical in construction was built. The facility enabled simultaneous comparison of two different control method. And real multi residential hose was investigated. Results showed that outdoor air temperature prediction control was superior to the conventional control for radiant floor heating system operated in the intermittent heating mode. New control system resulted in good thermal environment and les energy consumption.

  • PDF

Further validation of the hybrid particle-mesh method for vortex shedding flow simulations

  • Lee, Seung-Jae;Lee, Jun-Hyeok;Suh, Jung-Chun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.1034-1043
    • /
    • 2015
  • This is the continuation of a numerical study on vortex shedding from a blunt trailing-edge of a hydrofoil. In our previous work (Lee et al., 2015), numerical schemes for efficient computations were successfully implemented; i.e. multiple domains, the approximation of domain boundary conditions using cubic spline functions, and particle-based domain decomposition for better load balancing. In this study, numerical results through a hybrid particle-mesh method which adopts the Vortex-In-Cell (VIC) method and the Brinkman penalization model are further rigorously validated through comparison to experimental data at the Reynolds number of $2{\times}10^6$. The effects of changes in numerical parameters are also explored herein. We find that the present numerical method enables us to reasonably simulate vortex shedding phenomenon, as well as turbulent wakes of a hydrofoil.

Effect of Wind Speed up by Seawall on a Wind Turbine (방파제에 의한 풍속할증이 풍력터빈에 미치는 영향)

  • Ha, Young-Cheol;Lee, Bong-Hee;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • In order to identify positive or negative effect of seawall on wind turbine, a wind tunnel experiment has been conducted with a 1/100 scaled-down model of Goonsan wind farm which is located in West coast along seawall. Wind speedup due to the slope of seawall contributed to about 3% increment of area-averaged wind speed on rotor-plane of a wind turbine which is anticipated to augment wind power generation. From the turbulence measurement and flow visualization, it was confirmed that there would be no negative effect due to flow separation because its influence is confined below wind turbine blades' sweeping height.

Analysis of the effect of blade positions on the aerodynamic performances of wind turbine tower-blade system in halt states

  • Ke, Shitang;Yu, Wei;Wang, Tongguang;Ge, Yaojun;Tamura, Yukio
    • Wind and Structures
    • /
    • v.24 no.3
    • /
    • pp.205-221
    • /
    • 2017
  • The unsteady flow field disturbance between the blades and tower is one of the primary factors affecting the aerodynamic performance of wind turbine. Based on the research object of a 3MW horizontal axis wind turbine which was developed independently by Nanjing University of Aeronautics and Astronautics, numerical simulation on the aerodynamic performance of wind turbine system in halt state with blades in different position was conducted using large eddy simulation (LES) method. Based on the 3D unsteady numerical simulation results in a total of eight conditions (determined by the relative position with the tower during the complete rotation process of the blade), the characteristics of wind pressure distributions of the wind turbine system and action mechanism of surrounding flow field were analysed. The effect of different position of blades on the aerodynamic performance of wind turbine in halt state as well as the disturbance effect was evaluated. Results of the study showed that the halt position of blades had significant effect on the wind pressure distribution of the wind turbine system as well as the characteristics of flow around. Relevant conclusions from this study provided reference for the wind-resistant design of large scale wind turbine system in different halt states.