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1. Introduction

The lid-driven cavity (LDC) problem has served as a benchmark for validation of CFD codes essentially from the
beginning of CFD itself. The carefully-performed study of Burggraf (1966), although not the first investigation
of this problem, provided early accurate 2-D results that still are cited today. Considerably later, with the advent
of supercomputers, Ghia et al. (1982) published landmark computations of demonstrated accuracy that have
long provided a quantitative benchmark against which to test CFD codes. Three-dimensional solutions to this
problem began to appear by the mid to late 1980s, e.g., Freitas et al. (1985), and work has continued to the
present (for a review, see Shankar and Deshpande, 2005, and references therein). But only recently have studies
of the calibur of the Ghia et al. 2-D analyses begun to appear (see Albensoeder and Kuhlmann, 2005). Clearly,
the main impediment has been the same as it was in the early 2-D simulations—very long run times for 3-D
problems. This highlights the importance of parallel computation and the utility of employing overall algorithms
and numerical methods that are readily parallelizable.

Recent work on the 3-D LDC problem has been restricted to application of motion on at most top and bottom
boundaries, and usually only on the top boundary. Although the resulting flow fields contain a large-scale vortical
structure, essentially no matter what the value of Reynolds number, this structure does not necessarily lead to
effective mixing. In the present study we introduce motion by sliding all planes of the cubical box containing
the fluid and demonstrate in a qualitative way the more complicated streamlines compared with sliding a single
plane. Of importance in the context of parallelization is analysis of parallel efficiency of the present 3-D code,
which will ultimately be needed to enable thorough studies with guaranteed accuracy of results.

2. Analysis
Figure 1 displays the geometry of the problem considered here: a 3-D u
unit cube with unit velocities applied on each of the faces in opposite e

directions on opposing faces. It is apparent from simulations that this
choice of velocity directions to some extent mitigates well-known pres-
sure singularities in comers of the cube. The equations describing this
flow situation are well known—the 3-D incompressible Navier-Stokes
equations expressed here as

V.-U=0 (1a)
DU 1
Dt = —VP+ EEAU’ (1b)

where U = (u, v, w)7 is the dimensionless velocity vector; P is pres-
sure scaled with twice the dynamic pressure, and Re = UL /v with U Figure 1. Basic problem geometry.
and L being reference velocity and length, respectively (both set to un-
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ity), and v is kinematic viscosity. D/ Dt is the usual substantial (material) derivative; V is the gradient operator,
and A is the Laplacian.

The code employed for this study has been reported previously (McDonough and Dong, 2001 and Mc-
Donough ef al., 2004) and consists of a new form of large-eddy simulation employing the following concepts:
i) filter solutions rather than equations; ii) model subgrid-scale dependent variables, not their statistics; iii) em-
ploy subgrid-scale (SGS) results as part of a multi-scale formalism instead of discarding them. The numerical
analysis is rather standard, but highly efficient and robust; it utilizes the following techniques implemented on
a staggered, structured grid: centered differencing in space, trapezoidal integration in time with Douglas—Gunn
(1964) time splitting, quasilinearization of nonlinear terms, (spatial) filtering of under-resolved large-scale re-
sults, all applied in the context of Gresho’s (1990) projection 1 to handle velocity-pressure coupling. The code
is parallelized via MPI as reported by McDonough and Yang (2005).

3. Results

In Fig. 2 we present some preliminary results for the LDC problem with shearing on all faces in the manner
described above and indicated in Fig. 1. The Reynolds number employed for these calculations was 5000, and
only 263 grid points were used in the simulations. Part (a) of the figure shows streamlines of complete (large-
scale plus small-scale) velocity at a particular instant in time after a stationary (but not steady) behavior had been
attained; part (b) displays small-scale streamlines at the same instant. In both cases streamlines are shaded with
vorticity magnitude with dark blue corresponding to essentially zero, and pink indicating maximum, vorticity.
We observe that orientations of the two parts of the figure are somewhat different; they correspond to views from
the same general direction, thus permitting some qualitative comparison between small-scale and complete flow
behaviors, but they are rotated somewhat differently to better view the small-scale motion. In particular, one can
see a fairly large complicated vortical structure near the floor of the cavity in the complete flow field streamlines,
and at the same time fairly intense small-scale turbulence activity in the same region.

Figure 2. Velocity streamlines shaded with vorticity magnitude: (a) complete velocity; (b) small-scale velocity.

Figure 3 displays a zoom-in of the small-scale streamline field in the neighborhood indicated in Fig. 2(b) by the
red box, but viewed from a somewhat different direction to highlight the size of flow structures produced by the
form of LES employed in this study. We have very carefully aligned a copy of the computational grid so as to
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cross through the vortex that is relatively toward the front to
show that the SGS turbulence model is able to produce struc-
tures significantly smaller than the resolved-grid scale. At the
same time, it is clear from Fig. 2(b) that there are also both
larger and smaller structures produced in the small-scale cal-
culations thus at least suggesting a fairly good coverage of
length scales and, correspondingly, an ability to produce di-
rect interactions between large and small scales. Furthermore,
as a consequence, there is no necessity to invoke a scale sep-
aration assumption when employing this type of model. We
remark that this occurs predictably from the form of the SGS
models. They rely on a sophisticated combination of decon-
volution, generalization of Kolmogorov scaling and use of
the “poor man’s Navier-Stokes equations” (McDonough and

Huang, 2004) to produce very physically-based small-scale Figure 3. Small-scale streamlines zoom-in.
behaviors.

The problem discussed above has been run with

three different grid spacings (262, 51% and 101%) 8 —r l . ‘ . ‘ : .

with a range of number of processors from two

to 32. Results presented in Fig. 4 show speedups Lls

only for the finest of these grids. It should first be
observed that the results are not especially good,
and moreover these correspond to runs with com-
pletely dedicated processors. This is in signifi-
cant contrast to earlier timings of parallelization
with this code reported in the cited references. At
present we have not yet determined the underly- I °
ing cause(s) of this poor performance. There are,
however, some specific differences between the °
present study and those reported earlier. First, the al
problem itself is somewhat different in that its ge- L
ometry is uniform in all directions—there is no 2r
“longest” direction that in some instances can im- 5 4 6 8 1 12 " 1 18
prove parallel performance. Second, there have Number of Processors

been some changes to the code itself; but we did
not expect these to affect parallelization. Finally,
the processors now being used are different. The

Speedup

Figure 4. Speedup for a 1013 gridpoint calculation.

hardware is still a HP SuperDome SMP; but new processors were installed approximately six months ago, and
while one would hope this would lead to improved performance we have not yet eliminated this as the cause for
the poor parallel performance exhibited here.

4. Summary

We have introduced a new version of the 3-D lid-driven cavity problem that leads to more complicated fluid
parcel trajectories and thus, enhanced mixing, but at the same time weakens comer singularities. We employed
an advanced form of LES to solve this problem and presented preliminary results that show very complicated
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streamline structures on both large and small scales, despite a relatively low Reynolds number. Finally, we
demonstrated moderate speedups via parallelization. Ongoing tests are expected to resolve the questions raised
regarding possible sources of the rather poor parallel performance compared with that seen in earlier studies with
the same code. Because it is expected that the findings may be significant for parallel performance in general,
we plan to emphasize this aspect in the oral presentation at the Parallel CFD 2006 Conference.
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