• Title/Summary/Keyword: LEO small satellite

Search Result 33, Processing Time 0.023 seconds

Stabilization Converter Design and Modeling of LEO Satellite Power Systems (저궤도 위성의 전력 시스템 안정화를 위한 모델링 및 제어)

  • Yun, Seok-Teak;Won, Young-Jin;Lee, Jin-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.29-33
    • /
    • 2010
  • Satellites industry has been developing with the commercial and military needs. Because power system of satellite is very important to survival operation and hard to test, increasing reliability is very critical. Due to LEO small satellites are very sensitive to power system, effective stabilization control is important. Therefore, this paper introduce methods for general modeling of power converting system which it can be used design of controller and analysis of external disturbance influences. In conclusion, a modeling of LEO small satellites power converting system and a possible guide line to design reliable controller which optimizing power converters of LEO small satellite are generated.

Power management analysis of LEO small satellite (저 궤도 소형위성의 전력 운용 분석)

  • Choi, Jae-Dong;Lee, Im-Pyeong;Choi, Soon-Dal
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.198-201
    • /
    • 1995
  • The overall design criteria for the optimal design of a small LEO satellite power system are described in summary. The analysis result of the KITSAT-I whole orbit data suggests the efficient power opertion for KITSAT-I and also gives some crutial information for developing a new satellite power system.

  • PDF

Generalization modeling and verify for low-orbit satellite regulation converter (저궤도 위성의 정 전압 변압기 일반화 모델링 및 적용)

  • Yun, Seok-Teak
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.136-140
    • /
    • 2011
  • Satellites industry has been developing with the commercial and military needs. Because power system of satellites is very important to survival operation and hard to test, increasing reliability is very critical. Especially LEO small satellites are very sensitive to power system, effective stabilization control is important. Because of various need of load condition, converter design are complicated. Therefore this paper introduced general modeling of LEO small satellite converter system and analyzed stabilization control design. The performance prediction of LEO small satellites power system is typically critical. Because of verity controller and rectification value, it is hard to computation and test implementation. So, this approach has merit that will reduce cost and make more reliable system. Furthermore, it can be constraint of converter specification and controller design. This paper will examine generation a modeling of LEO small satellites power converting system, and a possible guide line to design reliable controller which optimizing power converters of LEO small satellite.

Research Trends in Global Wireless Communication Technology Based on the LEO Satellite Communication Network (저궤도 위성통신망 기반 글로벌 무선통신 기술 동향)

  • Kim, Pansoo;Ryu, Joon-Gyu;Byun, Woojin
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.83-91
    • /
    • 2020
  • In this paper, the contemporary deployment of broadband and Internet-of-Things (IoT) services based on the Low Earth Orbit (LEO) satellite communication network is presented. First, the global service and key technologies of small and nanosatellites are briefly addressed, and then, the progress of relevant standard technologies is explained. Finally, the overall potential for the future development of the LEO satellite communication network is highlighted.

Initial Results of Low Earth Orbit Space Radiation Dosimeter on Board the Next Generation Small Satellite-2

  • Uk-Won Nam;Won-Kee Park;Sukwon Youn;Jaeyoung Kwak;Jongdae Sohn;Bongkon Moon;Jaejin Lee;Young-Jun Choi;Jungho Kim;Sunghwan Kim;Hongjoo Kim;Hwanbae Park;Sung-Joon Ye;Hongyoung Park;Taeseong Jang
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.195-208
    • /
    • 2024
  • As human exploration goals shift from missions in low Earth orbit (LEO) to long-duration interplanetary missions, radiation protection remains one of the key technological issues that must be resolved. The low Earth orbit space radiation dosimeter (LEO-DOS) instrument to measure radiation levels and create a global dose map in the LEO on board the the next generation small satellite-2 (NEXTSat-2) was launched successfully on May 25, 2023 using the Nuri KSLV-III in Korea. The NEXTSat-2 orbits the Earth every 100 minutes, in an orbit with an inclination of 97.8° and an altitude of about 550 km above sea level. The LEO-DOS is equipped with a particle dosimeter (PD) and a neutron spectrometer (NS), which enable the measurement of dosimetric quantities such as absorbed dose (D), dose equivalent (H) for charged particles and neutrons. To verify the observations of LEO-DOS, we conducted a radiation dose estimation study based on the initial results of LEO-DOS, measured from June 2023 to September 2023. The study considered four source categories: (i) galactic cosmic ray particles; (ii) the South Atlantic Anomaly region of the inner radiation belt (IRB); (iii) relativistic electrons and/or bremsstrahlung in the outer radiation belt (ORB); and (iv) solar energetic particle (SEP) events.

A Study on Mass Reduction in the Conceptual Design of Solar Array with Commercial Solar Cells for Small SAR Satellites (상용 태양전지 셀을 이용한 소형 SAR 위성의 태양전지 어레이 개념설계 및 경량화 연구)

  • Kim, Tae-Deuk
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.5
    • /
    • pp.49-63
    • /
    • 2017
  • Solar cells have widely been utilized for a satellite to convert sunlight energy into electricity in space. Many different types of solar cells appropriate for each satellite program are available in current markets, which enables us to construct a solar array light and small often required from a low Earth orbit (LEO) synthetic aperture radar (SAR) satellite. Thus, it is important to choose a proper solar cell satisfying the requirements of mass and size for the solar array. In this article, we have surveyed typical suppliers and have discussed some characteristics of solar cells. Conceptual design examples of the solar array for LEO SAR satellites using several types of solar cells have been performed to show the pros and cons of solar cells by comparison of the total mass and size necessary for the solar array.

Flight Software Reprogramming for Next Generation LEO Satellites (차세대 저궤도 위성의 비행소프트웨어 리프로그래밍)

  • Yoo, Bum-Soo;Jeong, Jae-Yeop;Choi, Jong-Wook
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.93-97
    • /
    • 2017
  • In satellites, even a small error in flight software could cause a failure of missions. Therefore, there are strict development and verification processes for a high reliability of flight software. However, satellites on orbits could meet unexpected situations including hardware malfunction. In this case, it is necessary for flight software to be updated to cope with the unexpected situations and to continue their missions. This paper reviews reprogramming capability of next generation LEO satellites.

Staging and Injection Performance Analysis of Small Launch Vehicle Based on KSLV-II (한국형발사체에 기반한 소형발사체의 스테이징 및 투입성능 분석)

  • Jo, Min-Seon;Kim, Jae-Eun;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.155-166
    • /
    • 2021
  • In this paper, design study of a small two-stage launch vehicle is undertaken for the dedicated launch of the Compact Advanced Satellite 500 (CAS500)-class satellite into the Low Earth Orbit (LEO) by modifying the second and third stages of the Korean Space Launch Vehicle II (KSLV-II). Since the KSLV-II has three stages, velocity increment is newly distributed for the two-stage small launch vehicle. For this end, the staging design is carried out for the design parameters such as stage mass ratios, structural coefficients and engine options for each stage followed by trajectory analysis. Investigation of the results provides the combination of design parameters for the small launch vehicle for the dedicated launch of 500 kg-class satellite into LEO.

DCM Analysis of Solar Array Regulator for LEO Satellites (저궤도 인공위성용 태양전력 조절기의 전류 불연속 모드 해석)

  • Park, Heesung;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.593-600
    • /
    • 2016
  • The solar array regulator for low earth orbit satellites controls a operating point of solar array for suppling electric power to the battery and the other units. Because the control object is reversed, the new approach for large and small signal analysis is needed despite using buck-converter for power stage. In this paper, the steady state analysis of solar array regulator is performed in continuous conduction mode and discontinuous conduction mode, and the border condition for each mode is established. Also, the small signal model of solar array regulator is established in discontinuous conduction mode. Experiments are carried on in worst condition which the solar array regulator can face with discontinuous conduction mode. The results show that the solar array regulator is in stable.

A Solar Cell Based Coarse Sun Sensor for a Small LEO Satellite Attitude Determination

  • Zahran, Mohamed;Aly, Mohamed
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.631-642
    • /
    • 2009
  • The sun is a useful reference direction because of its brightness relative to other astronomical objects and its relatively small apparent radius as viewed by spacecrafts near the Earth. Most satellites use solar power as a source of energy, and so need to make sure that solar panels are oriented correctly with respect to the sun. Also, some satellites have sensitive instruments that must not be exposed to direct sunlight. For all these reasons, sun sensors are important components in spacecraft attitude determination and control systems. To minimize components and structural mass, some components have multiple purposes. The solar cells will provide power and also be used as coarse sun sensors. A coarse Sun sensor is a low-cost attitude determination sensor suitable for a wide range of space missions. The sensor measures the sun angle in two orthogonal axes. The Sun sensor measures the sun angle in both azimuth and elevation. This paper presents the development of a model to determine the attitude of a small cube-shaped satellite in space relative to the sun's direction. This sensor helps small cube-shaped Pico satellites to perform accurate attitude determination without requiring additional hardware.