DOI QR코드

DOI QR Code

Initial Results of Low Earth Orbit Space Radiation Dosimeter on Board the Next Generation Small Satellite-2

  • Uk-Won Nam (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • Won-Kee Park (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • Sukwon Youn (Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Jaeyoung Kwak (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • Jongdae Sohn (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • Bongkon Moon (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • Jaejin Lee (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • Young-Jun Choi (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • Jungho Kim (Korea Research Institute of Standards and Science) ;
  • Sunghwan Kim (Department of Radiological Science, Cheongju University) ;
  • Hongjoo Kim (Department of Physics, Kyungpook National University) ;
  • Hwanbae Park (Department of Physics, Kyungpook National University) ;
  • Sung-Joon Ye (Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Hongyoung Park (Satellite Technology Research Center, Korea Advanced Institute of Science and Technology) ;
  • Taeseong Jang (Satellite Technology Research Center, Korea Advanced Institute of Science and Technology)
  • Received : 2024.08.12
  • Accepted : 2024.08.31
  • Published : 2024.09.15

Abstract

As human exploration goals shift from missions in low Earth orbit (LEO) to long-duration interplanetary missions, radiation protection remains one of the key technological issues that must be resolved. The low Earth orbit space radiation dosimeter (LEO-DOS) instrument to measure radiation levels and create a global dose map in the LEO on board the the next generation small satellite-2 (NEXTSat-2) was launched successfully on May 25, 2023 using the Nuri KSLV-III in Korea. The NEXTSat-2 orbits the Earth every 100 minutes, in an orbit with an inclination of 97.8° and an altitude of about 550 km above sea level. The LEO-DOS is equipped with a particle dosimeter (PD) and a neutron spectrometer (NS), which enable the measurement of dosimetric quantities such as absorbed dose (D), dose equivalent (H) for charged particles and neutrons. To verify the observations of LEO-DOS, we conducted a radiation dose estimation study based on the initial results of LEO-DOS, measured from June 2023 to September 2023. The study considered four source categories: (i) galactic cosmic ray particles; (ii) the South Atlantic Anomaly region of the inner radiation belt (IRB); (iii) relativistic electrons and/or bremsstrahlung in the outer radiation belt (ORB); and (iv) solar energetic particle (SEP) events.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (NRF-2017M1A3A4A01077173 and NRF-2017M1A3A4A01077220). We would like to thank the SaTRec team for their efforts in ensuring the stable operation of LEO-DOS following the successful launch of NEXTSat-2.

References

  1. American National Standards Institute [ANSI], Space environment: galactic cosmic ray model, Technical Report, ISO 15390 (2004). 
  2. Benton ER, Benton EV, Frank AL, Conversion between different forms of LET. Radiat. Meas. 45, 957-959 (2010). https://doi.org/10.1016/j.radmeas.2010.05.008 
  3. Charles MW, ICRP Publication 103: recommendations of the ICRP. Radiat. Prot. Dosim. 129, 500-507 (2008). https://doi.org/10.1093/rpd/ncn187 
  4. Dachev TP, Characterization of the near Earth radiation environment by Liulin type spectrometers. Adv. Space. Res. 44, 1441-1449 (2009). https://doi.org/10.1016/j.asr.2009.08.007 
  5. Dachev TP, Bankov NG, Tomov BT, Matviichuk YN, Dimitrov PG, et al., Overview of the ISS radiation environment observed during the ESA EXPOSE-R2 mission in 2014-2016. Space Weather. 15, 1475-1489 (2017). https://doi.org/10.1002/2016SW001580 
  6. Dachev TP, Litvak ML, Benton E, Ploc O, Tomov BT, et al., The neutron dose equivalent rate measurements by R3DR/R2 spectrometers on the international space station. Life Sci. Space Res. 39, 43-51 (2023). https://doi.org/10.1016/j.lssr.2023.01.001 
  7. Dachev TP, Semkova JV, Tomov BT, Matviichuk YN, Dimitrov PG, et al., Overview of the Liulin type instruments for space radiation measurement and their scientific results. Life Sci. Space Res. 4, 92-114 (2015). https://doi.org/10.1016/j.lssr.2015.01.005 
  8. Hansen W, Richter D, Determination of light output function and angle dependent correction for a stilbene crystal scintillation neutron spectrometer. Nucl. Instrum, Methods Phys. Res. A, 476, 195-199 (2002). https://doi.org/10.1016/S0168-9002(01)01430-9 
  9. Hyun HJ, Anderson T, Angelaszek D, Baek SJ, Copley M, et al., Performances of photodiode detectors for top and bottom counting detectors of ISS-CREAM experiment. Nucl. Instrum, Methods Phys. Res. A, 787, 134-139 (2015). https://doi.org/10.1016/j.nima.2014.11.075 
  10. International Commission on Radiological Protection [ICRP], 1990 Recommendations of the International Commission on Radiological Protection (ICRP Publication, Ottawa, ON, 1991), 1-3. 
  11. Jang TS, Park HY, Lee JS, Park MY, Kim JH, et al., Development of Small Radar Satellite NEXTSat-2, in Asia-Pacific International Symposium on Aerospace Technology, Niigata, Japan, 12-14 Oct 2022. 
  12. Miller CA, Di Fulvio A, Clarke SD, Pozzi SA, Dual-particle dosemeter based on organic scintillator. Radiat. Prot. Dosim. 191, 319-327 (2020). https://doi.org/10.1093/rpd/ncaa151 
  13. National Council on Radiation Protection and Measurements [NCRP], Radiation protection guidance for activities in low-Earth orbit, NCRP Report No. 132 (2000). 
  14. Sato T, Niita K, Iwase H, Nakashima H, Yamaguchi Y, et al., Applicability of particle and heavy ion transport code PHITS to the shielding design of spacecrafts, Rad. Meas. 41, 1142-1146 (2006). https://doi.org/10.1016/j.radmeas.2006.07.014 
  15. Semkova J, Dachev T, Koleva R, Bankov N, Maltchev S, et al., Observation of radiation environment in the International Space Station in 2012-March 2013 by Liulin-5 particle telescope. J. Space Weather Space Clim. 4, A32 (2014). https://doi.org/10.1051/swsc/2014029 
  16. Wilson JW, Badavi FF, Kim MY, Clowdsley MS, Heinbockel JH, et al., Natural and induced environment in low Earth orbit. NASA TM-2002-211668 (2002). 
  17. Werner CJ, Bull JS, Solomon CJ, Brown FB, McKinney GW, et al., MCNP version 6.2 (Los Alamos National Laboratory, Los Alamos, NM, 2017). 
  18. Youn S, Nam UW, Kim S, Kim H, Park WK, et al., Calibration and simulation of a silicon dosemeter for ambient dose equivalent in low-Earth orbit space. Radiat. Prot. Dosim. 199, 2118-2125 (2023). https://doi.org/10.1093/rpd/ncad226