• Title/Summary/Keyword: LEO Satellite

Search Result 304, Processing Time 0.027 seconds

The Design/Analysis of High Resolution LEO EO Satellite STM (지구저궤도 고정밀 관측위성 구조 및 열 개발모델 설계/해석)

  • Kim, Jin-Hee;Kim, Kyung-Won;Lee, Ju-Hun;Jin, Ik-Min;Youn, Kil-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.99-104
    • /
    • 2005
  • The major role of a spacecraft structure is to keep and support the spacecraft safely in all the launch environment, on-orbit condition and during ground-transportation and handling. In a satellite development, a structural and thermal model (STM) is developed for two goals ; demonstration of a structural and a thermal stability. In the structure point of view, STM is used to verify the static/dynamic characteristics of structure in the initial stage of development. In this paper, the structure design/analysis of high resolution LEO earth observation satellite STM is described. Also, a low level sine vibration test is performed and compared to the results of finite element analysis.

Packet Acquisition for DS/CDMA-based LEO Satellite communication System (DS/CDMA 저궤도 위성 통신 시스템의 패킷 초기 동기 연구)

  • 김동희;김영초;이상운;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5B
    • /
    • pp.871-878
    • /
    • 2000
  • A divided matched filter-reference filter(MF-RF) technique for LEO satellite packet transmission is proposed to increase the packet throughput in the presence of severe Doppler shift and fading. To overcome the severe Doppler shift, the divided matched filter is adopted where the integration region of matched filter is divided and ouputs of divided matched filer are added to decide the correct pseudo-noise (PN) phase. To maintain the constant false alarm rate in time varying interference and fading channel, the adaptive threshold for acquisition is obtained from the reference filter. As a performance measure, average acquisition time and packet throughput are used, and the effets of the parameters, i.e., Doppler shift, chip energy to noise ratio, user velocity, standard deviation of shadowing, and preamble length are shown.

  • PDF

Power System Design for Next Generation LEO Satellite Application (차세대 저궤도 소형위성 적용을 위한 전력시스템 설계)

  • Park, Sung-Woo;Park, Hee-Sung;Jang, Jin-Beak;Jan, Sung-Soo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.283-287
    • /
    • 2005
  • In this paper, one general approach is proposed for the design of power system that can be applicable for next generation LEO satellite application. The power system consists of solar panels, battery, and power control and distribution unit(PCDU). The PCDU contains solar array modules, battery interface modules, low-voltage power distribution modules, high-voltage distribution modules, heater power distribution modules, on-board computer interface modules, and internal DC/DC converter modules. The PCDU plays roles of protection of battery against overcharge by active control of solar array generated power, distribution of unregulated electrical power via controlled outlets to bus and instrument units, distribution of regulated electrical power to selected bus and instrument units, and provision of status monitoring and telecommand interface allowing the system and ground operate the power system, evaluate its performance and initiate appropriate countermeasures in case of abnormal conditions. We review the functional schemes of the main constitutes of the PCDU such as the battery interface module, the auxiliary supply module, solar array regulators with maximum power point tracking(MPPT) technology, heater power distribution modules, spacecraft unit power distribution modules, and instrument power distribution module.

  • PDF

Analysis of Induced Magnetic Field Bias in LEO Satellites Using Orbital Geometry-based Bias Estimation Algorithm (궤도 기하학 기반 바이어스 추정기법을 이용한 저궤도 위성의 유도자기장 바이어스 분석)

  • Lee, S.H.;Yong, K.L.;Choi, H.T.;Oh, S.H.;Yim, J.R.;Kim, Y.B.;Seo, H.H.;Lee, H.J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1126-1131
    • /
    • 2008
  • This paper applies the Orbital Geometry-based Bias Estimation Algorithm to the magnetometer measurement data of KOMPSAT-1 and 2 and analyzes the induced magnetic field bias caused by the solar panels and electronics boxes in spacecraft bus. This paper reveals that the estimation and correction of the induced magnetic field bias copes with the aging process of magnetometer and makes it possible to carry on the satellite mission by extending its lifetime.

AOCS On-orbit Calibration for High Agility Imaging LEO Satellite (고기동 영상촬영 저궤도 위성 자세제어계 궤도상 보정)

  • Yoon, Hyungjoo;Park, Keun Joo;Yim, Jo Ryeong;Choi, Hong-Taek;Seo, Doo Chun
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.80-86
    • /
    • 2012
  • A fast maneuvering LEO satellite producing high resolution images was developed by Korea Aerospace Research Institute and launched successfully. To achieve accurate pointing and stringent pointing stability, the attitude orbit control subsystem implements high performance star trackers and gyroscopes. In addition, series of on-orbit calibration need to be performed to compensate mainly misalignment errors due to launch shock and on-orbit thermal environment. In this paper, the on-orbit calibration approach is described with the performance enhancement result through flight data analysis.

The Quality Loss of a X-Band Transmitter on the LEO Satellite (저궤도 관측위성에 탑재된 X-밴드 송신기의 Quality Loss)

  • 동문호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9A
    • /
    • pp.1306-1312
    • /
    • 2000
  • The quality loss of a X-band transmitter has been derived by means of MC simulation. The transmitter as a payload of LEO(Low Earth Orbit) satellite is capable of the down transmission the image data of hundreds Mbps generated from the Electro-Optical Instrument in real time. The parameters such as data asymmetry amplitude unbalance,phase unbalance, wave shaping and channel interference are included in the quality loss simulation Assuming that normally distributed gaussian noise is simply added to the channel, the quality loss of 0.7 dB has been obtained through this simulation based on a 95% confidence interval. The obtained quality loss can be applied to the link budgets as an additional loss item.

  • PDF

LEO Satellite Position and Velocity Coordinate Transformation Using GPS CNAV (GPS CNAV 데이터를 이용한 저궤도 위성의 위치와 속도의 좌표 변환)

  • Kim, Ghang-Ho;Kim, Chong-Won;Kee, Chang-Don;Choi, Su-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.3
    • /
    • pp.271-278
    • /
    • 2013
  • In this paper, ECEF to ECI coordinate transformation algorithm which uses EOP parameters in GPS civil navigation message is introduced, and ECEF to ECI coordinate transformation simulation results were analyzed. The ECEF to ECI coordinate transformation includes GPS to UTC, and UTC to other types of time conversions and EOP data processing algorithms. The ECEF to ECI coordinate conversion algorithm was certified using real LEO satellite position, velocity GPS data, and EOP data which offered by the Earth Orientation Center.

Lunar Exploration Satellite Communication Link Analysis (달 탐사 위성의 통신 링크 분석)

  • Kim, Ah-Leum;Lee, Seul-Ki;Lee, Woo-Kyung
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • In recent space industry, It has become a major trend to launch lunar exploration satellites to extend activities in the deep space environment. In this paper, a link budget analysis is carried out for the lunar exploration satellite. One of the major difference between the lunar satellite and LEO spacecraft lies in the orbit parameters. The vast distance between spacecraft and the Earth station imposes a challenging task for the spacecraft designers in terms of achieving stable communication link budget. The satellite tool kit software has been adopted to simulate the lunar exploring satellite. The relative distance between the spacecraft and the ground stations are tracked and the communication link budget is calculated accordingly.

Assessment of Earth Remote Sensing Microsatellite Power Subsystem Capability during Detumbling and Nominal Modes

  • Zahran M.;Okasha M.;Ivanova Galina A.
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.18-28
    • /
    • 2006
  • The Electric Power Subsystem (EPS) is one of the most critical systems on any satellite because nearly every subsystem requires power. This makes the choice of power systems the most important task facing satellite designers. The main purpose of the Satellite EPS is to provide continuous, regulated and conditioned power to all the satellite subsystems. It has to withstand radiation, thermal cycling and vacuums in hostile space environments, as well as subsystem degradation over time. The EPS power characteristics are determined by both the parameters of the system itself and by the satellite orbit. After satellite separation from the launch vehicle (LV) to its orbit, in almost all situations, the satellite subsystems (attitude determination and control, communication and onboard computer and data handling (OBC&DH)), take their needed power from a storage battery (SB) and solar arrays (SA) besides the consumed power in the EPS management device. At this point (separation point, detumbling mode), the satellite's angular motion is high and the orientation of the solar arrays, with respect to the Sun, will change in a non-uniform way, so the amount of power generated by the solar arrays will be affected. The objective of this research is to select satellite EPS component types, to estimate solar array illumination parameters and to determine the efficiency of solar arrays during both detumbling and normal operation modes.

13M ANTENNA UPGRADE PLAN FOR FUTURE MISSION

  • Park, Durk-Jong;Yang, Hyung-Mo;Koo, In-Hoi;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.493-495
    • /
    • 2007
  • Future sub-meter resolution LEO missions require simultaneous dual-polarization downlink and/or multiple channel downlinks in single polarization. Especially, dual-polarization is needed to cope with bandwidth limitation due to high speed data transmission. Current KARI 13m X-Band antenna system needs to be upgraded to cope with such downlink schemes. This paper describes brief discussions on engineering work regarding how to meet the new requirements with minimum impact on current system as well as C&M (Control and Monitoring) software.

  • PDF