• Title/Summary/Keyword: LEFM

Search Result 61, Processing Time 0.03 seconds

Determination of CTOD & CTOA Curve for Structural Steel Hot-Rolled Thin Plates (일반 구조용강 열간압연 박판에 대한 CTOD와 CTOA 곡선 결정)

  • 이계승;이억섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.729-732
    • /
    • 2003
  • The K-R design curve is an engineering method of linear-elastic fracture analysis under plane-stress loading conditions. By the way, linear-elastic fracture mechanics (LEFM) is valid only as long as nonlinear material deformation is confined to a small region surrounding the crack tip. Like general steels, it is virtually impossible to characterize the fracture behavior with LEFM, in many materials. Critical values of J contour integral or crack tip opening displacement (CTOD) give nearly size independent measures of fracture toughness, even for relatively large amounts of crack tip plasticity. Furthermore, the crack tip opening displacement is the only parameter that can be directly measured in the fracture test. On the other. the crack tip opening angle (CTOA) test is similar to CTOD experimentally. Moreover, the test is easier to measure the fracture toughness than other method. The shape of the CTOA curve depends on material fracture behavior and, on the opening configuration of the cracked structure. CTOA parameter describes crack tip conditions in elastic-plastic materials, and it can be used as a fracture criterion effectively. In this paper, CTOA test is performed for steel JS-SS400 hot-rolled thin plates under plane-stress loading conditions. Special experimental apparatuses are used to prevent specimens from buckling and to measure crack tip opening angle for thin compact tension (CT) specimens.

  • PDF

A Study on the Integrity Evaluation Method of Subclad Crack under Pressurized Thermal Shock (가압열충격 사고시 클래스 하부균열 안전성 평가 방법에 관한 연구)

  • Koo, Bon-Geol;Kim, Jin-Su;Choi, Jae-Boong;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.286-291
    • /
    • 2000
  • The reactor pressure vessel is usually cladded with stainless steel to prevent corrosion and radiation embrittlement, and number of subclad cracks have been found during an in-service-inspection. Therefore assessment for subclad cracks should be made for normal operating conditions and faulted conditions such as PTS. Thus, in order to find the optimum fracture assessment procedures for subclad cracks under a pressurized thermal shock condition, in this paper, three different analyses were performed, ASME Sec. XI code analysis, an LEFM(Liner elastic fracture mechanics) analysis and an EPFM(Elastic plastic fracture mechanics) analysis. The stress intensity factor and the Maximum $RT_{NDT}$ were used for characterizing. Analysis based on ASME Sec. XI code does not completely consider the actual stress distribution of the crack surface, so the resulting Maximum allowable $RT_{NDTS}$ can be non-conservative, especially for deep cracks. LEFM analysis, which does not consider elastic-plastic behavior of the clad material, is much more non-conservative than EPFM analysis. Therefore, It is necessary to perform EPFM analysis for the assessment of subclad cracks under PTS.

  • PDF

A Study on the Prediection of Fatigue Life in the Axi-symmetric Extrusion Die (축대칭 압출금형의 피로수명예측에 관한 연구)

  • 안수홍;김태형;김병민;최재찬;조해용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.235-239
    • /
    • 1994
  • In this paper, the fatigue behaviour of typical axisymmetric forward extrusion die is investigated and extrusion process is analyzed by the rigid-plastic finite element method and elasto-plastic finite element method. To approach the crack problem involving crack initiation and propagation in extrusion die, LEFM(Linear Elastic Fracture Mechanics) is introduced and singular element which models stress.strain singularity in the crack tip vincity has been used to obtain an accurate stress intensityu factor values and other results. Form the displacement around the crack tip the stress intensity factor and the effective stress intensity factor at the beginning of the die inlet radius has been calculated. Applying proper fatigue crack propagation criterion such as Paris/Erdogan fatigue law to this data the angle and direction of fatigue crack growth has been simulated and these are compared with some experimental results. Using the computed crack growth rate, fatigue life of the extrusion die has been evaluated.

  • PDF

An Effect of Uplift Pressure Applied to Concrete Gravity Dam on the Stress Intensity Factor (중력식 콘크리트 댐에 작용하는 양압력이 응력확대계수에 미치는 영향)

  • Lee Young-Ho;Jang Hee-Suk;Kim Tae-Wan;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.841-850
    • /
    • 2004
  • The modeling of uplift pressure within dam, on the foundation on which it was constructed, and on the interface between the dam and foundation is a critical aspect in the analysis of concrete gravity dams, i.e. crack stability in concrete dam can correctly be predicted when uplift pressures are accurately modelled. Current models consider a uniform uplift distribution, but recent experimental results show that it varies along the crack faces and the procedures for modeling uplift pressures are well established for the traditional hand-calculation methods, but this is not the case for finite element (FE) analysis. In large structures, such as dams, because of smaller size of the fracture process zone with respect to the structure size, limited errors should occur under the assumptions of linear elastic fracture mechanics (LEFM). In this paper, the fracture behaviour of concrete gravity dams mainly subjected to uplift Pressure at the crack face was studied. Triangular type, trapezoidal type and parabolic type distribution of the uplift pressure including uniform type were considered in case of evaluating stress intensity factor by surface integral method. The effects of body forces, overtopping pressures are also considered and a parametric study of gravity dams under the assumption of LEFM is performed.

The Fatigue Crack Growth Behavior of Concrete (콘크리트의 피로균열 성장거동에 관한 연구)

  • 김진근;김윤용
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.127-135
    • /
    • 1997
  • In this study, the wedge splitting tcst (WST) was carried out for the fatigue wack growth behavior of concrete. Selected test variables were concrete compressive strength of 28, 60 and 118 MI%, and stress ratio with 2 levels (6. 13%). In oder to make the designed stress ratio, the maximum and thr minimum fatigue loading level were 75-85% and 5- 10% of ultimate static load, respectively. Fatigue testing was preceded by crack mout.h opening displacement (CMOI)) compliance calibration tcst, and then the fatigue crack growth was computed by crack lcngth vs. (lMOI) compliance relations acquisited by the CMOD compliance calibration technique. To evaluate thc validity of CMOD compliancc calibration techniquc, the crack length p~mlicted by this method was cornpard with the crack length by linear elastic fracture mechanics(LEFIbl) and dyeing test. On the basis of the experimental results, a LRFhl-based c.mpirica1 model for f'at,igue crack growth rate(da/dN-AKI relationships) was presented. The fat,igut. crack growth ratc increased with the strength of concwtc. It appcars that t.he da/tiN-AKI relationships was influenced by stress ratio, however, the effect is diminished with an increase of strength. The comparisons between CblOl) compliance calibration technique anti the other. methods gave the validity of' ('MOD compliance calibration technique for the LZXT.

Evaluation and Interpretation of the Fracture Toughness of Rocks

  • Baek, Hwanjo
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1996.03a
    • /
    • pp.1-10
    • /
    • 1996
  • Fracture toughness of rock materials, which generally violate the fundamental assumptions of LEFM, often depends on the specimen size and test method employed. Hence, a standardized procedure for testing and data interpretation for determining fracture toughness of rock materials is required. Special attention has been given by the International Society for Rock Mechanics (ISRM) to the difficulties in obtaining true fracture mechanics parameters for the wide variety of rock materials. (omitted)

  • PDF

The extended finite element method applied to crack problems (균열문제에 적용된 확장유한요소법)

  • 지광습
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.395-402
    • /
    • 2004
  • The extended finite element scheme applied to crack problems is reviewed in this paper. As the enrichments of the solution space and the basic formulation are discussed, several examples of the application of the method are given. The examples include a LEFM crack, a cohesive crack, multiple LEFH cracks and dynamic crack propagation problems. It is shown that the extended finite element method is one of the powerful tools to study crack problems.

  • PDF

An Analysis on Fracture Behavior of Aluminum Foil and Paper by Linear Elastic Fracture Mechanics (선형파괴역학에 의한 Aluminum Foil과 종이의 파괴거동 해석)

  • An, Deuk-Man;Ok, Young-Gu
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.159-164
    • /
    • 2000
  • The fracture behaviors of aluminum foils and sheet papers were analyzed on the basis of linear elastic fracture mechanics(LEFM). The fracture loads of the similarly shaped specimens were calculated by dimensional analysis. The actual fracture loads were measured using the simple tension equipment. The predicted fracture loads were compared with the experimental results.

  • PDF

MODEL I FRACTURE IN CONCRETE USING CRACK LINE WEDGE LOADED DOUBLE CANTILEVER BEAM (Clwl-Dcb식편을 이용한 콘크리트의 개구형 파괴)

  • 송정근
    • Magazine of the Korea Concrete Institute
    • /
    • v.1 no.2
    • /
    • pp.101-112
    • /
    • 1989
  • 콘크리트에 선형파괴역할의 적용가능성을 연구한 많은 논문이 발표되었다. 본 논문에서는 CLWL-DCB식편을 이용한 콘크리트의 개구형파괴를 연구하였다. 표면구열길이는 리프리카를 사용하여 직접적인 방법으로 측정하였고, 이 결과은 실험에서 얻은 측정가중과 구열개구변위의 관계곡선을 이용하여 분석하였다. 감계응력강도계수와 감계구열선단위는 Two Parameter 모델을 사용하여 유효구열선단에서 구하였다. LEFM 구열단면과 실험으로 구한 구열단면으로부터 폐쇄압력을 얻기 위하여 중첩법을 적용하여 5종의 균열모델을 평가하였다.

An Analysis of Interface Debonding Failure on Reinforced Concrete Beams Strengthened with Carbon Fiber Sheet (탄소섬유쉬트로 보강된 철근콘크리트보의 계면박리해석)

  • 심종성;배인환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.839-844
    • /
    • 1998
  • The purpose of this study is to analyze the interface debonding failure on RC beams strengthened with carbon fiber sheet(CFS). The behavior of damaged RC beams strengthened with CFS is analytically investigated using both linear elastic fracture mechanics (LEFM) approach and the finite element method. This study includes the investigation of the separation mode by interface fracture of the strengthening materials due to the interfacial shear and normal stresses.

  • PDF