• Title/Summary/Keyword: LED lighting color

Search Result 212, Processing Time 0.036 seconds

Desktop-LED lighting for Eye Muscle Movement by Adjusting the Light Illuminance and Color Temperature

  • Kim, Byoung-Chul;Kim, Seon-Jong;Kim, Joo-Man
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.203-208
    • /
    • 2020
  • In this paper, we propose the design and implementation of a desktop LED stand and smart app that automatically adjusts color temperature and illuminance for optimal brightness and eye health by improving the structural problem of the LED stand. It is a tabletop LED stand that supports optimal brightness through color temperature control and heat transfer through infrared LED to relieve eye strain through blood circulation and muscle movement. The LED stand works with the smartphone to automatically adjust the optimal brightness and color temperature for the user's environment. In addition, the brightness of the infrared LED is adjusted to a living frequency of 4Hz to relax the eye muscles and reduce eye strain. This study implemented an effective measured data-based system of previous studies through the color temperature and illumination of LED lighting, and near-infrared rays, and presented meaningful results by conducting an experiment to prove the effect through subjects.

A study on lighting system for LED color temperature control using wireless communication and smartphone (무선 통신과 스마트폰을 이용한 LED 색온도 제어 조명 시스템에 관한 연구)

  • Hong, Young-Jin;Lim, Soon-Ja;Lee, Wan-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.72-77
    • /
    • 2017
  • Lighting systems in modern society has been developed using a combination of IT technology and LED lighting for the purpose of bringing about changes in human-centered natural lighting and to take advantage of the efficient management and energy saving of LED lighting. In this paper, we propose an LED lighting control system that can control the color temperature and brightness of LED lighting composed of 3000K Warm LEDs and 6000K Cool LEDs by using an Arduino Due and wireless communication technology such as Bluetooth and Zigbee. The Arduino Due allows the color temperature of the lighting to be adjusted in several steps by controlling the duty rate and enables many lights to be controlled using Zigbee communication capable of 1: N multiple communication. By using Bluetooth communication, it is possible to easily control the LED lighting by means of a smartphone application, thereby enhancing the convenience for the user. The wireless communication based LED lighting control system implemented in this study cannot only provide human-centered lighting through its color temperature control from 3067K to 5960K and illumination control, but can also reduce the power consumption and be used as a natural-friendly lighting system.

A Study on the Comparison of the Emotional Experiment from Fluorescent Lamp and LED Lighting (사무공간의 사용자 행위별 형광램프와 LED조명 감성비교 실험에 관한 연구)

  • Lee, Min-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.8-17
    • /
    • 2012
  • Unlike traditional lightings, LED lighting is one of objects that sends user an emotional segments through brightness control from various color temperature and dimming control. Also, within present interior lighting environment, emotional researches about traditional fluorescent lamp and newly implemented LED lighting environment are in active progress. Despite the fact adjectives describing emotions and scale modeling have been repeatedly used in many cases for a long time, there seems to be a lack of results in reliability, and there is a limitation for applying into actual lighting design. The purpose of this study is to construct an actual sized test-bed, which is used to draw out one's emotional words of behavior patterns from inner emotional experiences about lighting environment in an office space. Also, having fluorescent lamp and LED lighting as the main test subjects, we have tested emotional parts according to the changes of color temperature and adjective vocabularies chosen from user's action, and we have compared and analyzed the drawn out data. Also, having fluorescent lamp and LED lighting as the main test subjects, we have tested emotional parts according to the changes of color temperature and adjective vocabularies chosen from user's action, and we have compared and analyzed the drawn out data.

Comparative Luminance and Correlated Color Temperature of Work-place by a Fluorescent and LED Light Sources (LED광원과 형광광원에 의한 작업면의 휘도 및 색온도 비교)

  • Baik, Seung heon;Jeong, In Young;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.8 no.6
    • /
    • pp.21-26
    • /
    • 2008
  • According to the tendency of energy efficiency and environment-friendly chracteristics, demend of High-efficiency lighting using LED(Light Emitting Diode)are being increased actively and applied in various fields. However, In order to adequate application of LED light sources, it is necessary to lighting environment and luminous characteristics of LED light sources. This Study aims to characterize the work-plane lighting environment by LED light sources comparing with fluorescent light sources which are widely used. For the sake of this study, a fluorescent light source and 5 LED light sources were introduced and luminance and correlated color temperature were measured to evaluate luminance contrast. The experimental model is Mock-up which is $4.9m{\times}7.2m$ with a height of 2.9m. The test room was set up partition and desks. Luminance and correlated color temperature were measured work-plane on the desk which was set up local lighting by the Radiant Imaging ProMetric 1400. The optical characteristics data of LED can give a lot of advantages to design LED lighting appliances. Hereafter, the object of research will be conducted to evaluate effects of LED light sources on working performance, survey of visual performance, preference and physiology of subjects.

Energy consumption by Spectral Power Distribution Of LED lighting (LED 조명의 분광 분포에 따른 건물에너지 소비)

  • Jung, Ho-Youn;Kim, Hyo-In;Kim, Gon;Yun, Geun-Young
    • KIEAE Journal
    • /
    • v.12 no.3
    • /
    • pp.101-106
    • /
    • 2012
  • Lighting energy accounts for approximately 20% of the electrical energy used worldwide. Thus, High efficiency Light emitting diode(LED)lighting is getting more popular as the next generation lighting replaced to traditional lighting fixtures. Also, LED lighting not only has a long lifetime but also can realize a variety visual environments through the wavelengh control. The lighting energy varies depending on the Spectral Power Distribution(SPD) even though the Illuminance level is same. Therefore, This study indicates that the difference of indoor energy consumption under the same illuminance level when Spectral Power Distribution(SPD) is different. As a result, Lighting energy consumption under red-color emphasizing SPD is about 10% lower than under blue-color emphasizing SPDs.

Design and Implementation of LED Lighting System with Adjustable Brightness and Color Capability (색상 및 밝기 조절이 가능한 LED 조명 기구의 설계 및 구현)

  • Kwak, Seong-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.579-586
    • /
    • 2015
  • In this paper, we design and implement a lighting system which has a capability of adjusting brightness and colors of LED module. The lighting systems is consisted of RGB and white LEDs controlled by a micro-processor. All colors in nature can be synthesized in our lighting system by controlling brightness of 4 color LEDs individually. The current flowing to LED is limited to a maximum set value to extend the LED life time using PWM current control. The control module also includes the function that it can save and load brightness and color data set by the user. The implemented lighting system passed the electromagnetic compatibility(EMC) test such that it can be used as a commercial product.

A Color Visible Light Communication Based on Emotional Lighting (감성조명 기반 컬러 가시광통신 시스템)

  • Yeo, Eun-Mo;Lee, Dae-Chun;Kim, Ki-Doo;Park, Young-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7A
    • /
    • pp.635-639
    • /
    • 2011
  • As LED becomes more important in lighting system, LED-based communication draws much attention. Only a single color has been used for this purpose thus far. However, as emotional lighting becomes more important, the need for color visible light communication is growing. In this paper, a transmission scheme for RGB color based communication is proposed that can transmit data while changing color constantly.

Design of RBFNN-based Emotional Lighting System Using RGBW LED (RGBW LED 이용한 RBFNN 기반 감성조명 시스템 설계)

  • Lim, Sung-Joon;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.696-704
    • /
    • 2013
  • In this paper, we introduce the LED emotional lighting system realized with the aid of both intelligent algorithm and RGB LED combined with White LED. Generally, the illumination is known as a design factor to form the living place that affects human's emotion and action in the light- space as well as the purpose to light up the specific space. The LED emotional lighting system that can express emotional atmosphere as well as control the quantity of light is designed by using both RGB LED to form the emotional mood and W LED to get sufficient amount of light. RBFNNs is used as the intelligent algorithm and the network model designed with the aid of LED control parameters (viz. color coordinates (x and y) related to color temperature, and lux as inputs, RGBW current as output) plays an important role to build up the LED emotional lighting system for obtaining appropriate color space. Unlike conventional RBFNNs, Fuzzy C-Means(FCM) clustering method is used to obtain the fitness values of the receptive function, and the connection weights of the consequence part of networks are expressed by polynomial functions. Also, the parameters of RBFNN model are optimized by using PSO(Particle Swarm Optimization). The proposed LED emotional lighting can save the energy by using the LED light source and improve the ability to work as well as to learn by making an adequate mood under diverse surrounding conditions.

A Color Temperature and Illuminance Controllable LED Lighting System (색온도와 조도 제어가능한 LED 조명 시스템)

  • Kim, Hoon;Youm, Jea-Kyoung;Chung, Won-Sup;Kim, Hee-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.10-22
    • /
    • 2009
  • This paper presents an LED lighting system with an LED color control algorithm that can independently change its color temperature and illuminance. To show the validity of the proposed algorithm, it is proven that its solution always exists. The proposed algorithm was applied to the control of an LED module that is composed of red, green, blue, and white (RGBW) LEDs. Its color temperature variation ranged from 3,500~7,500[$^{\circ}K$], and its illuminance ranges from 500~1,500[lux]. Within these range, the color temperature and illuminance deviations are as low as $\pm0.8$[%] when the junction temperature of LEDs are maintained at 40[$^{\circ}C$]. In the range of 30~70[$^{\circ}C$], the measured illuminance and color temperature deviations are as low as 2.1[%] and 3.6[%], and the compensated ones are as low as 1[%] and 0.49[%], when the desired illuminance and color temperature are 1,000[lux] and 6,500[$^{\circ}K$], respectively.nyang.ac.kr).

A Study on the Lighting Environment Standard for Museum Exhibition Halls, with a Focus on Color Temperature (박물관 전시 공간 조명 환경 기준 연구(I) - 색온도를 중심으로)

  • Lee, Sungeun;Roh, Hyunsook
    • Conservation Science in Museum
    • /
    • v.18
    • /
    • pp.65-76
    • /
    • 2017
  • Following advances in technology and with the growing need for renewable energy, fluorescent and halogen lamps are being replaced by LED lighting in museum systems. This paper researched the setting of standards for the diverse lighting systems in addition to the LED lighting that are expected to be introduced in museums in the future. Contrary to previous belief, LEDs were shown to only barely emit in the ultraviolet region, but the visible rays were confirmed to produce discoloration depending on illuminance-hours. When the color change by LED lamps at the color temperature of 2800K, or warm white, was compared with 5500K, or white, the emission spectrum analysis confirmed that the blue spike increased at a higher color temperature and caused more discoloration. This suggests that in addition to illumination, color temperature should be considered by including the emission spectrum when museums set lighting environment standards.