• Title/Summary/Keyword: LED junction temperature

Search Result 63, Processing Time 0.025 seconds

Thermal Analysis and Design of AlGaInP-based Light Emitting Diode Arrays

  • Ban, Zhang;Liang, Zhongzhu;Liang, Jingqiu;Wang, Weibiao;JinguangLv, JinguangLv;Qin, Yuxin
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.143-149
    • /
    • 2017
  • LED arrays with pixel numbers of $3{\times}3$, $4{\times}4$, and $5{\times}5$ have been studied in this paper in order to enhance the optical output power and decrease heat dissipation of an AlGaInP-based light emitting diode display device (pixel size of $280{\times}280{\mu}m$) fabricated by micro-opto-electro-mechanical systems. Simulation results showed that the thermal resistances of the $3{\times}3$, $4{\times}4$, $5{\times}5$ arrays were $52^{\circ}C/W$, $69.7^{\circ}C/W$, and $84.3^{\circ}C/W$. The junction temperature was calculated by the peak wavelength shift method, which showed that the maximum value appears at the center pixel due to thermal crosstalk from neighboring pixels. The central temperature would be minimized with $40{\mu}m$ pixel pitch and $150{\mu}m$ substrate thickness as calculated by thermal modeling using finite element analysis. The modeling can be used to optimize parameters of highly integrated AlGaInP-based LED arrays fabricated by micro-opto-electro-mechanical systems technology.

The Design of 6 inch Down-light by Optimization of the Optical and the Thermal Properties (광학적 열적 최적화를 통한 6인치 다운라이트 설계)

  • Kim, Sung-Hyun;Joung, Young-Gi;Seo, Bum-Sik;Yang, Jong-Kyung;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1178-1182
    • /
    • 2011
  • The best methods for distribution controled of LED lighting fixtures is control to designed LED chip array, lens and reflector. However, lens design need distribution design to reflector for low-wattage LED lighting because of difficulty of production and reduction of light efficiency. In addition, it needs maximize of thermal performance to improve the efficiency and reliability of device. As a result, for the height of reflector 40[mm] and Inclination 25[$^{\circ}$], we can see the best distribution properties, and, in the thermal properties, junction temperature MCPCB 62.9 [$^{\circ}C$], FR4 PCB 89.6 [$^{\circ}C$], FR4 PCB from Via-hole is 63.1 [$^{\circ}C$]. it may improve for thermal properties for makes the Via-hole.

The Analysis of Thermal Movement and Structural Function in High-power LED (고출력 LED의 구조함수분석과 열 거동현상 분석)

  • Lee, Seung-Min;Yang, Jong-Kyung;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1613_1614
    • /
    • 2009
  • In this paper, thermal movement of high power LED on the MCPCB is analyzed with structural function and CFdesign V10 program. thermal resistance is decreased as 10.1 [$^{\circ}C$/W] in MCPCB from 12.2 [$^{\circ}C$/W] in LED package. Junction temperature which is calculated with thermal computational analysis program shows 85.113 [$^{\circ}C$] and almost same to measured data.

  • PDF

Design and Fabrication of Heat Sink for Vehicle LED Headlamp Using Thermally-Conductive Plastics (열전도성 플라스틱을 적용한 자동차 LED 전조등 방열구조 연구)

  • Kim, Hyeong Jin;Lee, Dong Kyu;Park, Hyun Jung;Yang, Hoe Seok;Na, Pil Sun;Kwak, Joon Seop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.8
    • /
    • pp.544-549
    • /
    • 2015
  • Since LEDs (light emitting diodes) have many advantages as a light source in vehicle headlamp, such as good reliability, energy and space saving, and flexible headlamp design. On the other hand, the dependence of its performance and life on temperature have great influence on its practical use. In this study, design and fabrication of heat sink for vehicle LED headlamp were performed using thermally-conductive plastics. This study focused on the effective heat sink structure with limited space in the vehicle LED headlamp. We designed two different prototype of heat sink by thermal simulation using SolidWorks program, which had excellent temperature characteristics. The two different prototype of heat sink were fabricated by injection molding with thermally-conductive plastics. The results showed that LED $T_j$ (junction temperature) of sample B (model 1) and sample C (model 1, 2) was below then $165^{\circ}C$ when applying the thermally-conductive plastics in heat sink of vehicle LED headlamp.

CHAINED COMPUTATIONS USING AN UNSTEADY 3D APPROACH FOR THE DETERMINATION OF THERMAL FATIGUE IN A T-JUNCTION OF A PWR NUCLEAR PLANT

  • Pasutto, Thomas;PENiguel, Christophe;Sakiz, Marc
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.147-154
    • /
    • 2006
  • Thermal fatigue of the coolant circuits of PWR plants is a major issue for nuclear safety. The problem is especially accute in mixing zones, like T-junctions, where large differences in water temperature between the two inlets and high levels of turbulence can lead to large temperature fluctuations at the wall. Until recently, studies on the matter had been tackled at EDF using steady methods: the fluid flow was solved with a CFD code using an averaged turbulence model, which led to the knowledge of the mean temperature and temperature variance at each point of the wall. But, being based on averaged quantities, this method could not reproduce the unsteady and 3D effects of the problem, like phase lag in temperature oscillations between two points, which can generate important stresses. Benefiting from advances in computer power and turbulence modelling, a new methodology is now applied, that allows to take these effects into account. The CFD tool Code_Saturne, developped at EDF, is used to solve the fluid flow using an unsteady L.E.S. approach. It is coupled with the thermal code Syrthes, which propagates the temperature fluctuations into the wall thickness. The instantaneous temperature field inside the wall can then be extracted and used for structure mechanics computations (mainly with EDF thermomechanics tool Code_Aster). The purpose of this paper is to present the application of this methodology to the simulation of a straight T-junction mock-up, similar to the Residual Heat Remover (RHR) junction found in N4 type PWR nuclear plants, and designed to study thermal striping and cracks propagation. The results are generally in good agreement with the measurements; yet, in certain areas of the flow, progress is still needed in L.E.S. modelling and in the treatment of instantaneous heat transfer at the wall.

A Study of Characteristics of the LED Heat Dissipation According to the Changes in Composition of Die-casting Aluminum (다이캐스팅용 알루미늄의 성분 변화에 따른 LED 방열 특성 연구)

  • Yeo, Jung-Kyu;Her, In-Sung;Yu, Young-Moon;Lee, Se-Il;Choi, Hee-Lack
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.535-540
    • /
    • 2014
  • Because of the development of LED technology, products due to high output and compact, the material with high thermal conductivity has been developed. Now that heat radiating part of the LED lamp is currently used for die casting of aluminum. The development of aluminum with excellent thermal conductivity is required. In this study, we measured the thermal properties and compared them while we produced the alloy by changing the component of die casting aluminum. From this study, the thermal conductivity and thermal resistance of the developed alloy were superior to die casting aluminum.

Characteristics of Thermal Radiation Pastes Containing Graphite and Carbon Nanotube (흑연 및 탄소나노튜브 혼합 방열도료의 특성)

  • Lee, Ji Hun;Song, Man-Ho;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.218-224
    • /
    • 2016
  • Thermal radiation pastes were prepared by dispersing carbon materials as fillers with a content of 1 weight percent in an acrylic resin. The kind of fillers was as follows; $25{\mu}m$ graphite, $45{\mu}m$ graphite, $15{\mu}m$ carbon nanotube(CNT), a 1:1 mixture of $25{\mu}m$ graphite and $15{\mu}m$ CNT, and a 1:1 mixture of $45{\mu}m$ graphite and $15{\mu}m$ CNT. Thermal emissivity was measured as 0.890 for the samples with graphite only, 0.893 for that with CNT only, and 0.892 for those containing both. After coating prepared pastes on a side of 0.4 mm thick aluminium plate and placing the plate over an opening of a box maintained at $92^{\circ}C$ with the coated side out, the temperatures on the uncoated side of the plates were measured. The samples containing graphite and CNT showed the lowest temperatures. The paste with mixed fillers was coated on the back side of the PCB of an LED module and thermal analysis was carried out using Thermal Transient Tester (T3ster) in a still air box. The thermal resistance of the module with coated PCB was measured as 14.34 K/W whereas that with uncoated PCB was 15.02 K/W. The structure function analysis of T3ster data revealed that the difference between junction and ambient temperatures was $13.8^{\circ}C$ for the coated case and $18.0^{\circ}C$ for the uncoated. From the infrared images of heated LED modules, the hottest-spot temperature of the module with coated PCB was lower than that of the uncoated one for a given period of LED operation.

Research on Heat-Sink of 40Watt LED Lighting using Peltier Module (펠티어 소자를 이용한 40[W]급 LED 조명기구의 방열에 관한 연구)

  • Eo, Ik-Soo;Yang, Hae-Sool;Choi, Se-Ill;HwangBo, Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.733-737
    • /
    • 2007
  • The object of this paper is to propose a method to solve resulting heat in using numerous modulized watt-class LEDs in MCPCB as lighting device. To use LED for lighting, the chip needs to have a large capacity, resulting in extra heat in P-N connection area. To solve this problem, a Pottier Module, heat-sink panel and a fan was installed to measure variations in the temperature. Additionally, temperature variation characteristics were observed according to the heat conductor panel connecting cooling module and heat-sink panel, insulator and thermal grease. As a result, the type and amount of heat-sink panel was the most important facto. The fan would effect the temperature by max. $18[^{\circ}C]$ while other materials affected the temperature by $2{\sim}3[^{\circ}C]$, showing significant difference.

  • PDF

Analysis of Junction Temperature Measurement in 20W Module for Street Lighting (20W 가로등 모듈의 접합온도 측정 분석)

  • Lee, Se-Il;Yang, Jong-Kyung;Kim, Nam-Goon;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.163-163
    • /
    • 2010
  • 기존 LED의 접합온도 및 열저항은 PKG 단계에서 측정 가능 하였다. PKG에서의 접합온도 측정방식과 같은 방법으로 C사의 1W High Power LED XP2 20개를 직렬 연결하여 모듈을 구성한 20W 가로등 모듈에 대하여 접합온도를 측정 하였다. 측정결과 20W 가로등 모듈의 접합온도는 약 $61^{\circ}C$로 나타났다.

  • PDF

Optical and Electrical Characteristics of GaN-based Blue LEDs after Low-current Stress (GaN계 청색 발광 다이오드에서 저전류 스트레스 후의 광 및 전기적 특성 변화)

  • Kim, Seohee;Yun, Joosun;Shin, Dong-Soo;Shim, Jong-In
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.2
    • /
    • pp.64-70
    • /
    • 2012
  • We analyzed the changes in electrical and optical characteristics of 1 $mm^2$ multiple-quantum-well (MQW) blue LEDs grown on a c-plane sapphire substrate after a stress test. Experiments were performed by injecting 50 mA current for 200 hours to TO-CAN packaged sample chips. We selected the value of injection current for stress through the junction-temperature measurement by using the forward-voltage characteristics of a diode to maintain a sufficiently low junction temperature during the test. The junction temperature at the selected injection current of 50 mA was 308 K. Experiments were performed under the assumption that the average junction temperature of 308 K did not affect the characteristics of the ohmic contact and the GaN-based materials. Before and after the stress test, we measured and analyzed current-voltage, light-current, light distribution on the LED surface, wavelength spectrum and relative external quantum efficiency (EQE). After the stress test, it was observed experimentally that the optical power and the relative EQE decreased. We theoretically investigated and experimentally proved that these phenomena are due to the increased nonradiative recombination rate caused by the increased defect density.