• Title/Summary/Keyword: LED driving

Search Result 254, Processing Time 0.031 seconds

Verification of Optical Wireless Communication Functionality in Micro-LED Display Light Source Integrated with Field-effect Transistor (전계형 스위칭 소자가 집적된 마이크로 LED 디스플레이 광원의 광 무선 통신 기능 검증)

  • Jong-In Kim;Hyun-Sun Park;Pan-Ki Min;Myung-Jin Go;Young-Woo Kim;Jung-Hyun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.1-5
    • /
    • 2023
  • In the past, display devices have undergone many changes, such as plasma TVs and LCDs, and have continued to develop. Recently, new display technologies, such as Organic Light Emitting Diode displays and Inorganic Light Emitting Diode displays, have been developed. Among them, Micro LED displays have the potential to improve performance more than LCDs and OLEDs, but a lot of effort and time are needed until the mass production technology (transfer and bonding) of Micro LED displays is developed. We have developed a new Micro LED display light source that can be produced using existing transfer and bonding process technologies to enable faster commercialization of Micro LED in the industry. This light source is TFT deposition on LED. TFT deposition on LED has the advantage of being able to produce displays using existing process technology, making early commercialization of display application products possible. In this study, we applied the Active Driving method to verify the performance of TFT deposition on LED as a display to determine its commercialization potential. Additionally, to facilitate faster application of Micro LED in the industry, we applied TFT deposition on LED to Optical Wireless Communication systems, which are widely used in application service areas such as safety/security and sensors, to verify its communication performance. The experimental results confirmed that TFT deposition on LED is not only capable of AM driving but can also be applied to OWC systems.

  • PDF

High Performance Control of LED Drive System for LCD Backlight (LCD 백라이트를 위한 LED 드라이브 시스템의 고성능 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.8-17
    • /
    • 2012
  • This paper proposes high performance control of light emitting diode(LED) drive system for liquid crystal display(LCD) backlight. The CCFL(cold cathode fluorescent lamp)was used to a conventional LCD backlight. Due to improvement on luminous efficiency, long life and wide color gamut, LED has gradually substituted for CCFL as backlight. The backlight using LED is necessary to use many LED. For that reason, the LED backlight is using a lot of LED driving circuits. The many LED driving circuit is generated a current deviation between LED. Eventually, it is caused brightness deviation between LED. Therefore, this paper improves the current deviation using transformer and balancing capacitor to solve this problem. Also, for accurate and uniform brightness control, this paper is applied the artificial intelligent control to a dimming control. This paper is compared with conventional system, and validity of this paper proves through that result.

AC-DC Converter for Electrolytic Capacitor-less LED Driver with Reduced LED Peak Current (LED 구동전류의 피크값이 저감된 전해 커패시터 없는 AC-DC 컨버터)

  • Kang, Kyoung-Suk;Park, Gwon-Sik;Seo, Byung-Jun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.59-65
    • /
    • 2018
  • A new single-stage flyback power converter with PFC for electrolytic capacitor-less LED driver is proposed in this study. This method minimizes the peak-to-average ratio of the LED driving pulsating current by adding the LED driving current near the LED current valley area, as well as the third harmonic component injection into the input current. The reduced peak current value of the LED drive current minimizes the thermal stress of the LED itself, thereby increasing the reliability of the LED, as well as achieving a long lifetime. Simulation and experimental results show the usefulness of the proposed topology.

Optical Characteristics of LED module due to changing Ambient Temperature and Driving Current (주변온도와 인가전류 변화에 따른 LED module의 광학적 특성)

  • Lee, Seung-Min;Aung, Aye Thida;Yang, Jong-Kyung;Yim, Youn-Chan;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.377-378
    • /
    • 2007
  • In this paper, we were confirmed the optical characteristics of LED module by changing ambient temperature and driving current. When we supplied same driving current, the brightness quality drops due to an increased ambient temperature. The difference of brightness properties came out more large according to an increased driving current. Moreover, peak wavelength become shifted by long wavelength and declined output power by increasing driving current.

  • PDF

New Driving Method of High Brightness LED Backlight Using Active Current Source

  • Hwang, S.;LEE, J.;Lim, S.;Oh, M.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1642-1645
    • /
    • 2007
  • The brightness of LED changes according to the current flowing through LEDs. The current mirror was used to drive LEDs effectively. The reference current of the current mirror was usually controlled by the resistor but the size of this resistor is very large and this resistor consumes too much power for high power LED backlight driving. The reference current of the current mirror LED driver was controlled by using flyback converter at small size with low power consumption in this paper. The concept of active current source was presented.

  • PDF

The Reduction Method of Strings Current Unbalancing in LED Lighting Driving System (LED 조명용 구동장치에서 열간 전류의 불평형 감소방법)

  • Park, Chong-Yeun;Song, Jae-Wook;Yoo, Jin-Wan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.26-32
    • /
    • 2013
  • The LED has the proportional characteristic between the flux of light and its current and has caused voltage-current deviation on production process. Thus the unbalancing of each LED strings current occurred by its characteristic deviation. This unbalancing reduce a uniformity of the flux of light. Therefore, we researched to design method the LED driver based on DSP and the balancing transformer for a LED current balancing. These are applied to 50W LED module consist of 4 parallel strings. We analyzed the reduction of LED currents unbalance by experimental result from each method.

A High Voltage, High Side Current Sensing Boost Converter

  • Choi, Moonho;Kim, Jaewoon
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.36-37
    • /
    • 2013
  • This paper presents high voltage operation sensing boost converter with high side current. Proposed topology has three functions which are high voltage driving, high side current sensing and low voltage boost controller. High voltage gate driving block provides LED dimming function and switch function such as a load switch of LED driver. To protect abnormal fault and burn out of LED bar, it is applied high side current sensing method with high voltage driver. This proposed configuration of boost converter shows the effectiveness capability to LED driver through measurement results.

  • PDF

Design and Implementation of a Current-balancing Circuit for LED Security Lights

  • Jung, Kwang-Hyun;Yoo, Jin-Wan;Park, Chong-Yeun
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.869-877
    • /
    • 2012
  • This paper presents a current-balancing circuit for security lights that uses parallel-connected LEDs. The parallel connection of LEDs causes current differences between the LED strings because of characteristic deviations. These differences can reduce the lifespan of a particular point of LEDs by thermal spotting. They can also cause non-uniform luminance of the lighting device. Among the different methods for solving these problems, the method using current-balancing transformers makes it easy to compensate for current differences and it has a simple circuitry. However, while the balancing transformer has been applied to AC light sources, LEDs operate on a DC source, so the driving circuitry and the design method have to be changed and their performances must be verified. Thus in this paper, a design method of the balancing transformer network and the driving circuitry for LEDs is proposed. The proposed design method could have a smaller size than the conventional design method. The proposed circuitry is applied to three types of 100-watt LED security lights, which use different LEDs. Experimental results are presented to verify the performance of the designed driving circuits.

A High Efficiency LED Driver Circuit using LLC Resonant Converter (LLC 공진형 컨버터를 이용한 고효율 조명용 LED 구동회로)

  • Shin, Dae-Seong;Jung, Young-Jin;Hong, Sung-Soo;Han, Sang-Kyu;Jang, Byung-Jun;Kim, Jong-Hae;Lee, Il-Oun;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • This paper presents the Two-stage LED Driving system using LLC resonant converter for LED lighting application. Due to the existence of the nonisolation DC/DC converter to control the LED current and the light intensity, the conventional three-stage LED Driving system has the problem of low power conversion efficiency. To solve this problem, a novel scheme without any nonisolation DC/DC converter is proposed, in which, the isolated DC/DC converter, e.g., LLC resonant converter in the paper, can perform the LED current control and stage, e.g., PFC stage and LLC stage, the efficiency can be significantly improved. Moreover, the cost and the volume of the whole LED driving system can be reduced compared to those of the conventional ones. The operational principle and the characteristics of the proposed scheme are presented. The proposed scheme is verified experimentally with a 45W output prototype LED driver.

Evaluation of the Device Temperature and Optical Characteristics in High Power White LED Lamp by Driving Condition (고출력 백색 LED 램프의 구동조건에 따른 온도 및 광 특성 평가)

  • Yun, Jang-Hee;Ryeom, Jeong-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.33-38
    • /
    • 2011
  • In this paper, the effect of pulse current and generated heat on characteristics of the LED is measured and evaluated. For experiments, the LED driving circuit and digital logic which determines period and duty ratio of lighting are designed. At rated current, the temperature and optical characteristics of the LED with change in duty ratio and period are compared, and those of the LED with change in duty ratio and existence of cooling fan are also compared at constant average current. As a result, frequency does not affect device temperature and optical characteristic of the LED but duty ratio does. Also, the cooling fan is less effective on those of the LED at rated current.