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Abstract 
 

This paper presents a current-balancing circuit for security lights that uses parallel-connected LEDs. The parallel connection of 
LEDs causes current differences between the LED strings because of characteristic deviations. These differences can reduce the 
lifespan of a particular point of LEDs by thermal spotting. They can also cause non-uniform luminance of the lighting device. 
Among the different methods for solving these problems, the method using current-balancing transformers makes it easy to 
compensate for current differences and it has a simple circuitry. However, while the balancing transformer has been applied to AC 
light sources, LEDs operate on a DC source, so the driving circuitry and the design method have to be changed and their 
performances must be verified. Thus in this paper, a design method of the balancing transformer network and the driving circuitry 
for LEDs is proposed. The proposed design method could have a smaller size than the conventional design method. The proposed 
circuitry is applied to three types of 100-watt LED security lights, which use different LEDs. Experimental results are presented to 
verify the performance of the designed driving circuits.. 
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I. INTRODUCTION 
 

Due to recent technical advances in LEDs, LED applications 
for lighting devices are gradually expanding [1]-[14]. When 
compared with traditional light sources, LEDs have a longer 
service life, are environmentally friendly, and are easy to 
control. Thus LEDs are being used to supply outdoor lighting 
needs such as security lights and street lights.  

However, due to problems in the manufacturing process, 
LEDs have a problem with relatively large variations in the VF 
characteristics [2]-[14]. These variations cause current-sharing 
problems, which generate current differences between the rows 
of parallel-connected LEDs. This in turn prevents the uniform 
distribution of heat in LED lighting devices, thus accelerating 
the aging of specific LEDs and resulting in a non-uniform 
luminance. Consequently, the reliability and the quality of 
illumination of LED lighting devices is decreased. 

 To address this problem, many studies have been 
conducted. The solutions can be largely divided into the 
method of using a linear regulator and current mirror in each 

 
 

(a) Method using a current mirror of linear regulator. 

 
(b) Method using DC/DC converters. 

 
(c) Method using passive components and diodes. 

 

Fig. 1.  Driving methods for current-sharing problem. 
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row [2]-[5], the method of using a current control converter in 
each row [6], and the method for compensating the current 
error using a passive device in each row [7]-[14]. The method 
shown in Fig. 1 (a) is inappropriate for LED loads with high 
power, because relatively large losses are generated by the 
linear regulator voltage. For the method shown in Fig. 1 (b), 
the circuit is complex because a converter is used in each row 
and it is not easy to reduce the error between converters due to 
the errors between elements such as a current-sensing resistor. 
The method shown in Fig. 1 (c) has a simpler circuit, better 
efficiency and better error compensation ability than the above 
two methods. Some circuits have been suggested in the third 
method, and this study adopts the method using a 
current-balancing transformer. 

The balancing transformer has been used in such 
applications as discharge lamps (CCFL, florescent lamps, etc.). 
These lamps are driven by an AC source, so a balancing 
transformer is directly applicable. Thus in order to apply LEDs, 
which are driven by a DC source, it is necessary to redesign 
and verify performances. 

Thus in this paper, a driving circuitry is proposed for 
parallel-connected LEDs and the balancing transformer 
network is designed using a worst-case impedance estimation. 
The proposed design method can reduce the size, when 
compared with the conventional design method. In addition, 
the parasitic components of the balancing transformer are also 
considered for the realization. The proposed circuitry consists 
of an LLC inverter and balancing transformers and it is applied 
to three types of 100-watt LED security lights, which use 
different LEDs. The experimental results are presented to 
verify the performance of the designed driving circuits. 

 

II. DRIVING CIRCUITRY AND BALANCING 
TRANSFORMER NETWORK  

 

The example scheme used in this study is illustrated in Fig. 2. 

In Fig. 2, Vin becomes the output of the PFC, which is 
generally 400 VDC when an active PFC is used. The input DC 
voltage is controlled by the LLC resonant inverter, which 
applies the total current of the serially and parallel connected 
LEDs that have been fed back from the secondary side. The 
AC voltage of the secondary side of T1 is applied equally to the 
parallel-connected LED strings and the balancing transformer. 
The LED string consists of diodes, capacitors and serially 
connected LEDs, and it supplies current to the LEDs as DC, 
whereas the AC current flows to the balancing transformer. 

The currents flowing through LED strings 1 and 2 (i1 and i2) 
are balanced by Tb1, and the currents flowing through LED 
strings 3 and 4 (i3 and i4) are balanced by Tb2. Furthermore, i5, 
which is equal to i1 + i2, and i6, which is equal to i3 + i4, are 
balanced by Tb3. Thus a uniform current flows through each of 
the LED strings. 

To design the proposed circuit, this paper is organized as 
follows. First, a single balancing transformer is analyzed and 
the effects of the parasitic components are discussed. Then the 
network of the balancing transformer is designed by expanding 
this analysis. After that, the proposed driving circuitry is 
presented. 

 
A. Balancing transformer analysis 

An LED string consisting of a rectifier and LEDs can be 
calculated as an AC-equivalent resistor by the First Harmonic 
Approximation (FHA) [14], as shown in Fig. 3, and 
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Fig. 2.  An example of proposed LED driver scheme. 

 
Fig. 3.  An AC equivalent circuit for a LED string. 
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represented in Equation 1. 

  121
8

LEDstring RR
p

=         (1) 
 

Fig. 4 shows the equivalent circuit of two strings, with the 
LED string as an AC-equivalent resistor and the voltage of the 
secondary side as an AC voltage source. 

When the equivalent circuit in Fig. 4 is separated into the 
primary and secondary sides of Tb1, Equation 2 is obtained. If it 
is assumed that there is no leakage inductance, the mutual 
inductance M = Lb. Thus Equation 2 can be rewritten as 
Equation 3. When this is represented as a ratio of i1 and i2, 
Equation 4 is obtained. As a result of Equation 4, if 
|Rstring1-Rstring2| << Lb, i1/i2 is almost 1, which means a uniform 
current is flowing at each string. 
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To obtain the required inductance value of the balancing 
transformer ('Lb'), which can achieve 3% of the current 
differences, the parameters of the LED strings and the 
estimated equivalent resistances are listed in Table I.  

In the Table I, the Vf parameters were obtained from a 

datasheet for one of the LEDs used in this study[18]. It was 
assumed that twelve LEDs were serially connected in an LED 
string.  

RLED can be obtained as (If/Vf)•N and Rstring can be obtained 
using Equation 1. The current difference is the result of 
Equation 4 which is converted into a percentage as shown in 
Fig. 5. In Fig. 5, R1 = RLED_min and R2 = RLED_max were 
determined so that the current difference would be at its 
maximum for the worst-case design. 

As a result of the estimation, it was found that the balancing 
transformer must have a minimum inductance of 215uH in 
order to obtain a current difference between the rows of 3% or 
less. 

For practical implementation, the parasitic components of 
the transformer also need to be considered. The equivalent 
circuit, which includes the parasitic components of the 
balancing transformer, is presented in Fig. 6 by expending Fig. 
4.  

Since the balancing transformer is wound in opposite 
directions between the primary and the secondary sides, the 
turn ratio of the balancing transformer can be 1:-1 (i.e., N = -1). 
Thus Equation 5 is obtained. Since Rc (the core loss) is much 
larger than jωLM (the impedance of the magnetizing 
inductance), Equation 5 can be rewritten as Equation 6 so that 
Rc is ignored. 
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If it is assume that the Rlk1 ≈ Rlk2 and that Llk1 ≈ Llk2, because 
the turn number of the primary and the secondary are the same,  
Equation 7, the current differences, which produce differences 
between Rstring1 and Rstring2, are rather reduced by parasitic 

 

Fig. 4.  An equivalent circuit for two LED strings. 
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Fig. 5.  An estimation result of current difference rates. 

TABLE I 

PARAMETERS OF LED STRINGS, EQUIVALENT RESISTANCE AND 
MAXIMUM CURRENT DIFFERENCE 

Parameters Value Estimated Results Value 

No. of LED  
in a LED strings (N) 12 RLED_min(R1) 92.5Ω 

Operation frequency 100kHz RLED_max(R2) 126.8Ω 

Vf_min (at If = 350mA) 2.7V Rstring_min(Rstring1) 75Ω 

Vf_max (at If = 350mA) 3.7V Rstring_max(Rstring2) 102.8Ω 

  Max. current difference  27% 
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components.  
So in the design for the current balancing, the parasitic 

components of the transformer are negligible. However, the 
parasitic components produce power losses and make the 
source voltage higher to obtain the desired current of the LEDs. 
Therefore, for practical purposes, the parasitic components 
should be kept as low as possible.   

 
B. Balancing Transformer Network 

To expend the LED strings, the current balancing can be 
achieved by a cascaded connection of the balancing 
transformers, as shown in Fig. 2. Tb3 is the cascade-connected 
transformer and it can minimize the current error between i5 
and i6, which flows on the primary and secondary sides of Tb3. 
An equivalent circuit for the design of the balancing 
transformer is shown in Fig. 7.  

The inductance of the second-level transformer can be 
determined by the relationship between i1 and i3 or i4 and by the 
relationship between i2 and i3 or i4.  

Since the relational expressions of Tb1 and Tb2 are identical, 

the equation for string 1 and string 3 with Lb1 = Lb2 = Lb 
becomes Equation 9. The equations for the relationship with 
other strings can be expressed in the same form. 

The determination of the inductance value for Tb3 is based 
on worst-case design methods as a first-level transformer. The 
two possible cases, where the current difference between i5 and 
i6 has the largest value, are as follows:  

 
case 1 : 
  i1,2 = imax, i3,4 =imin (Rstring1,2 = Rstring_max, Rstring3,4 = Rstring_min) 
 
case 2 : 
  i1,2 = imin, i3,4 =imax (Rstring1,2 = Rstring_min, Rstring3,4 = Rstring_max) 
 
Thus Equation 10 is obtained when Rstrings is set as case 1. 

The current ratio of i1 and i3 is obtained as Equation 11. 

 
Fig. 6. An equivalent circuit for two LED strings with parasitic 
components. 

 
Fig. 7.  An equivalent circuit for four LED strings. 
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Fig. 8.  An equivalent circuit of a balancing transformer network for eight LED strings. 
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When Equation 11 is compared with Equation 4, the 
inductance term is doubled and the required inductance of Tb3 
is half that of the previous value. For example, if it is assumed 
that Lb3 = 1/2Lb, Equation 11 has the same form as Equation 4. 
A smaller requirement for the inductance values means that it 
is possible to use smaller size transformers. However, since the 
upper level of the transformer flows two times more current 
than the previous level, the core and coils of the transformer 
should be chosen carefully. 

To expand the LED string and calculate the inductance for 
the next subordinate transformer, half of the value of the 
previous-level transformer is required. 

An example of eight strings with an equivalent circuit is 
presented in Fig. 8. The balancing transformer network consists 
of eight balancing transformers, and the maximum level of the 

transformer is third level. 
To verify the required inductance value, a estimation result 

is represented in Fig. 9. The simulation parameters are the 
same as those in Table I. As a result of the simulation, the 
first-level inductance was 215uH, the second-level inductance 
was 107uH, and the third level inductance was 53uH, in order 
to obtain a current error between the rows of 3% or less. 

 
C. Design of the current control circuit  

A current control circuit is presented in Fig. 10. As shown in 
Fig. 10, the current control circuit consists of a half bridge 
inverter, an LLC resonant tank, and feedback circuits.  

Current control is carried out by changing the switching 
frequency using the gain of the LLC resonant tank and by 
changing the frequency with the feedback circuits. 

The sensed current is rectified to obtain the average current 
and input it to the error amp, which is compared to the 
reference voltage. The generated error is delivered to the 
half-bridge inverter controller on the primary side through the 
photo coupler, and the switching frequency is changed by the 
internal VCO of the controller according to the generated error. 
An FSFR2100 half-bridge controller from Fairchild, which has 
an internal MOSFET, was used.  

The resonant frequency and quality factor of the LLC 
resonant tank are shown below [6]. 
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where Rload is the AC equivalent resistance of the LED 
matrix and the voltage gain transfer function can be expressed 
in Equation 14. 
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Fig. 9.  An estimation result of current difference rates for eight 
LED strings. 

 
Fig. 10.  A block diagram of inverter and control circuits. 
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As the quality factor Q is a function of the load resistance, 
the voltage gain varies by the resistance of the LED matrix. 
However, since the tolerance of the LED resistance can be 
calculated from a datasheet as calculated before, the voltage 
gain according to the switching frequency can be found as a 
determinant of the LED matrix. 

An example of a target LED matrix is 8 by 12. This means 
that one LED string consists of 12 EA, and an LED matrix 
consists of eight strings. As mentioned in the introduction, 
three kinds of LED were used as follows: 

 

LED A:  
 Golden dragon Plus(Osram), Vf =2.7~3.7V(@350mA) [18] 
LED B: 
 LUXON Rebel (Philips), Vf = 2.55~3.99V(@350mA) [19] 
LED C: 
 Xlamp (XPEWHT) (Cree),Vf =3.2~3.9V(@350mA) [20] 

 

However, since the datasheet of LED C provides only a 
typical (3.2V) and a maximum value (3.9V) of VF, the 
minimum value is assumed to be 2.5V in this study. Thus the 
operation voltages for the LED load are Vop_max = 47.88V and 
Vop_min = 30V. 

The AC equivalent resistance of the LED string is presented 
in Equation 1, and the whole of the LED load (Rload) is 
connected in parallel, so that Rload is presented as Equation 15. 

 

n
R

RRRR
string

nstringstringstringload == K//// 21
     

(15) 
 

where n is the number of LED strings connected in parallel. 
How to decide the values of the resonant tank has been 

discussed in many studies [15]-[17]. Thus the values of the 
resonant tank (Lm, Lr, Cr and N) are decided by a design 
procedure referenced in this paper. The designed values are 
presented in Table II, and the voltage gain characteristics 
according to the switching frequency at the minimum load and 
the maximum load are presented in Fig. 11 using Equation 12. 
To achieve constant current control, the switching  
frequencies are varied from 81kHz to 108kHz. The normal 
operation-switching frequency should be around 90kHz. 

 

III. EXPERIMENTAL RESULTS AND DISCUSSION  
 

A prototype of the designed LED driver was put into a 
100-watt LED security light to verify its performance. The 
number of whole LEDs was 96 EA, and a LED matrix of 
twelve serial and eight parallel LEDs were formed. Three 
different kinds of LED matrixes were tested. The specifications 
and designed values for the prototype are presented in Table III. 
A picture of the prototype circuit is presented in Fig. 12. 

In Table III, the inductance of the balancing transformer Lb 
was determined to be large enough to minimize the current 
error. In addition, the switching frequency is around 90 kHz, so 
that an ultra-fast-recovery diode was used for rectification in 
the LED strings.  

Polyester film capacitors, which have a longer lifespan than 
electrolytic capacitors relative to the lifetime of lighting 
devices, were selected to be the output capacitor.  
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Fig. 11.  Voltage gain characteristics of LLC resonant tanks. 

TABLE II 

DESIGN PARAMETERS 

Parameter Value Parameter Value 

Input DC voltage 400V Operation 
frequency range 

70kHz –
120kHz 

No. of LED strings 8 Lm 400uH 

No. of LEDs in one LED string 12 Lr 240uH 

Rload_max(for min. load)  13.8Ω Cr 10nF 

Rload_min(for max. load) 8.68Ω N 0.125 

 
 

(a) A driving circuit with balancing transformer. 
 

 
(b) A driving circuit with an LED matrix. 

 

Fig. 12.  A picture of prototype circuit. 
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All of the measurement results were measured with a 
LeCroy Waverunner 6030 oscilloscope and a Fluke 287 
multi-meter. To verify the design of the LLC resonant tank, the 
primary side currents, the secondary side currents, and the 
secondary side voltage waveforms were measured under 
minimum, typical, and maximum loads using an electronic 
load. Since the LED strings contained rectifier circuits, an 
additional rectifier was used for measurement. 

In Fig. 13, the voltage waveform on the primary side is at the 
top of the figure, in the middle is the current waveform on the 
primary side, and at the bottom is the current waveform on the 
secondary side. For the current waveform on the primary side, 
the primary current does not have a sin wave because of the 
ZVS operation. The operation frequency for the minimum load 
was measured at 85 kHz and the maximum load was measured 
at 102kHz. 

To confirm the current balancing, the current values for each 
LED string were measured, as shown in Fig. 14.  

In Fig. 15(a), the measured current between two LED strings 
has a difference of about 80mA, while Fig. 15(b), which was 
an applied balancing transformer network, has almost the same 
waveform.  

The current values were measured by the previously 
mentioned multi-meters, because the accuracy of a current 
probe is not good enough for the current differences of the 
LEDs. The current was measured with four strings 
simultaneously. When the balancing transformer was 
withdrawn from the network, the LEDs were driven by the 
total current only. The measurement results are listed in Table 
IV. 

When the balancing transformer was withdrawn from the 
network, the maximum value was 400mA for A, 380.8mA for 
B and 376.4mA for C while the minimum value was 284mA 
for A, 320mA for B, and 340.7mA for C. In other words, the 
current difference between the minimum and the maximum is 
29% for A, 15.9% for B, and 9.48% for C. Because the desired 
current value was 350mA for each string, the estimated 
maximum current error was 18.8% for A, 8.8% for B, and 
7.5% for C. The current difference of the A matrix was 
measured as the largest value. However, the LEDs of A are not 
from the same reel, which means that the manufacturing 
environment can be different. Therefore, the results are not 
directly comparable between A and the others. However, the 

TABLE III 

PROTOTYPE SPECIFICATION 

Parameter Value Parameter Value 

Input DC voltage 380V ~ 420V Lb 1st level 500uH 

LED matrix 8 x 12 Lb 2nd level 250uH 

ILED of each string 350mA Lb 3rd level 125uH 

Total current (Itot) 2.8Arms 
Core of  
balancing  
transformers 

EI1309 

Operation 
frequency (fop) 

70 ~ 120kHz Lm /Lr/ Cr 
400uH 
/240uH/10nF 

Output capacitor 1uF /  
poly-ester film  Output power 100 Watt 

 
Fig. 14.  A block diagram of measurement setup. 

 
 

(a) Minimum load. 
 

 
(b) Typical load. 

 
(c) Maximum load. 

 

Fig. 13.  Key waveforms of the prototype according to load 
variations. 
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trend can be followed.   
When measured with the balancing transformer network, the 

maximum values were 354.5mA, 353.7mA, and 360.5mA and 
the minimum values were 351mA, 342.7mA, and 347mA 
respectively. Therefore, the current differences between the 
minimum and the maximum values are 0.9%, 3.1%, and 3.7% 
and the maximum current error was 1.2%, 2%, and 3%. 

The measured efficiency was 84%, and the largest loss on 
the part of the balancing circuit occurred in the rectifier diodes. 
Thus one of method to improve the efficiency of the rectifier 
diodes in LED strings is to alternate the Schottky diodes. 

IV. CONCLUSIONS  
 

In this study, a circuit that compensates for the current errors 
of each row of LEDs in a 100-watt security lighting system 
was designed. Unlike converter circuits, a balancing 
transformer was used for each row to compensate for the 
current error between the rows. Thus it can remove the driver 
ICs and the switches for each LED string.  

Further, a balancing transformer network was designed to 
reduce the size waste of the transformers in the worst case. In 
order to show the validity of the transformer, the experimental 
results were shown to achieved a current error of 3% for each 
row of three kinds of LEDs. The results also demonstrated the 
validity of the design proposed in this paper. In addition, the 
efficiency was measured at 84%. 
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