• Title/Summary/Keyword: LED color

Search Result 751, Processing Time 0.028 seconds

A Study on the Implementation and Development of Image Processing Algorithms for Vibes Detection Equipment (정맥 검출 장비 구현 및 영상처리 알고리즘 개발에 대한 연구)

  • Jin-Hyoung, Jeong;Jae-Hyun, Jo;Jee-Hun, Jang;Sang-Sik, Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.463-470
    • /
    • 2022
  • Intravenous injection is widely used for patient treatment, including injection drugs, fluids, parenteral nutrition, and blood products, and is the most frequently performed invasive treatment for inpatients, including blood collection, peripheral catheter insertion, and other IV therapy, and more than 1 billion cases per year. Intravenous injection is one of the difficult procedures performed only by experienced nurses who have been trained in intravenous injection, and failure can lead to thrombosis and hematoma or nerve damage to the vein. Nurses who frequently perform intravenous injections may also make mistakes because it is not easy to detect veins due to factors such as obesity, skin color, and age. Accordingly, studies on auxiliary equipment capable of visualizing the venous structure of the back of the hand or arm have been published to reduce mistakes during intravenous injection. This paper is about the development of venous detection equipment that visualizes venous structure during intravenous injection, and the optimal combination was selected by comparing the brightness of acquired images according to the combination of near-infrared (NIR) LED and Filter with different wavelength bands. In addition, an image processing algorithm was derived to threshehold and making blood vessel part to green through grayscale conversion, histogram equilzation, and sharpening filters for clarity of vein images obtained through the implemented venous detection experimental module.

고색재현성 디스플레이 응용을 위한 고안정성 양자점 함유 유리색변환소재

  • 정운진;이한솔;이진주
    • Information Display
    • /
    • v.23 no.4
    • /
    • pp.12-21
    • /
    • 2022
  • 반도체 기반 양자점 (QD)소재와 CsPbX3 (X=Cl, Br, I)기반 perovskite 양자점 또는 나노결정 소재(PNC)는 매우 우수한 양자효율과 좁은 발광 선폭으로 고색재현성 디스플레이 색변환 소재 또는 발광 소재로서 각광을 받고 있다. 그러나, 기존 화학적 합성법을 통해 제조되는 QD 및 PNC 소재는 취약한 열 및 화학적 안정성으로 인해 장기 내구성의 개선이 요구된다. 이들 QD 및 PNC 소재는 모두 완전 무기 소재인 산화물 기반 유리 소재내에 생성이 가능하며, 이를 통해 장기 내구성을 근본적으로 개선할 수 있다. 반도체 기반 QD 함유 유리소재 (QDEG)의 경우, 유리 내 core/shell 구조를 가진 QD의 생성으로 양자효율의 향상이 가능했으나, 콜로이드 기반 양자점 (cQD)과 달리 다중 shell의 형성이 어려워 양자효율이 제한되고, 발광 선폭이 넓어 고색재현성 디스플레이용 색변환 소재로 적용되기에는 아직 한계가 있다. 한편, Perovskite 양자점 (또는 나노결정) 함유 유리소재 (PNEG) 소재는 QDEG과 달리 콜로이드 기반의 PNC (c-PNC)가 가지는 우수한 양자효율과 20 nm 수준의 좁은 선폭을 유리 내에서도 가지며, c-PNC 대비 열적, 화학적 및 광학적 안정성이 획기적으로 향상되어 실질적인 응용 가능성을 높이고 있다. 특히, 일반적인 용융-급랭법으로 제조하여 대량생산에 용이하고, 분말 또는 판상 등 다양한 형태로의 제작이 가능한 장점이 있다. 현재까지 제조된 PNEG의 최대 PL-QY는 450 nm 여기 시 녹색 및 적색에서 약 60% 수준이며, Al2O3 분말을 이용할 경우 최대 80% 수준까지 달성이 가능하다. 또한, PNEG과 blue LED를 이용하여 백색 LED를 구현할 경우 color filter를 적용하지 않을 때, NTSC 대비 최대 약 130 % 수준의 높은 색재현 영역을 보여 주고 있으며, 실제 LCD용 BLU로 적용 시 기존 상용 c-QD 소재와 동등 이상의 색재현 영역을 보이고 있어, 실질적인 응용 가능성이 매우 높음을 확인하였다. PNEG의 상업적인 응용을 위해서는 몇 가지 추가적인 연구 개발이 필요하다. 기존 c-QD 또는 c-PNC는 나노 수준 크기의 입자가 액상에 분산된 형태로 입도 제어가 용이하나, PNEG의 경우 분말 제조 시 유리 형성 후 분쇄를 통해 제조되며, 입도가 대개 수십 ㎛ 이하로 작아질 경우 PL-QY가 저하되어, 향후 잉크젯 공정 응용을 위해서는 고효율의 분말 제조공정 개발이 필요하다. 또한, 유리 소재의 경우 절연체로서 기존 QD 소재 대비 electro-luminescence(EL) 소자의 활성층으로 사용하는데 제약이 있어 PNEG을 이용한 EL 소자 제작에 대한 연구도 필요하다. 마지막으로, 기존 c-PNC 소재와 같이 Pb가 함유되지 않은 PNEG 소재의 개발이 선결되어야 할 것으로 판단된다. 이와 같은 해결 과제들에도 불구하고, PNEG 소재는 기존 c-QD 소재 대비 매우 우수한 안정성을 기반으로 고품위 고색재현 디스플레이용 색변환 소재로서 다양한 응용에 활용될 수 있을 것으로 기대된다.

Implementation of a walking-aid light with machine vision-based pedestrian signal detection (머신비전 기반 보행신호등 검출 기능을 갖는 보행등 구현)

  • Jihun Koo;Juseong Lee;Hongrae Cho;Ho-Myoung An
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.31-37
    • /
    • 2024
  • In this study, we propose a machine vision-based pedestrian signal detection algorithm that operates efficiently even in computing resource-constrained environments. This algorithm demonstrates high efficiency within limited resources and is designed to minimize the impact of ambient lighting by sequentially applying HSV color space-based image processing, binarization, morphological operations, labeling, and other steps to address issues such as light glare. Particularly, this algorithm is structured in a relatively simple form to ensure smooth operation within embedded system environments, considering the limitations of computing resources. Consequently, it possesses a structure that operates reliably even in environments with low computing resources. Moreover, the proposed pedestrian signal system not only includes pedestrian signal detection capabilities but also incorporates IoT functionality, allowing wireless integration with a web server. This integration enables users to conveniently monitor and control the status of the signal system through the web server. Additionally, successful implementation has been achieved for effectively controlling 50W LED pedestrian signals. This proposed system aims to provide a rapid and efficient pedestrian signal detection and control system within resource-constrained environments, contemplating its potential applicability in real-world road scenarios. Anticipated contributions include fostering the establishment of safer and more intelligent traffic systems.

Monitoring Red Tide in South Sea of Korea (SSK) Using the Geostationary Ocean Color Imager (GOCI) (천리안 해색위성 GOCI를 이용한 대한민국 남해안 적조 모니터링)

  • Son, Young Baek;Kang, Yoon Hyang;Ryu, Joo Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.531-548
    • /
    • 2012
  • To identify Cochlodinium polykrikoides red tide from non-red tide water (satellite high chlorophyll waters) in the South Sea of Korea (SSK), we improved a spectral classification method proposed by Son et al.(2011) for the world first Geostationary Ocean Color Imager (GOCI). C. polykrikoides blooms and non-red tide waters were classified based on four different criteria. The first step revealed that the radiance peaks of potential red tide water occurred at 555 and 680 nm (fluorescence peak). The second step separated optically different waters that were influenced by relatively low and high contributions of colored dissolved organic matter (CDOM) (including detritus) to chlorophyll. The third and fourth steps discriminated red tide water from non-red tide water based on the blue-to-green ratio, respectively. After applying the red tide classification, the spectral response of C. polykrikoides red tide water, which is influenced by pigment concentration as well as CDOM (detritus), showed different slopes for the blue and green bands (lower slope at blue bands and higher slope at green bands). The opposite result was found for non-red tide water. This modified spectral classification method for GOCI led to increase user accuracy for C. polykrikoides and non-red tide blooms and provided a more reliable and robust identification of red tides over a wide range of oceanic environments than was possible using chlorophyll a concentration, or proposed red tide detection algorithms. Maps of C. polykrikoides red tide in SSK outlined patches of red tide covering the area near Naro-do and Tongyeong during the end of July and early of August, 2012 and extending into from Wan-do and Geoje-do during the middle of August, 2012.

Microtube Light-Emitting Diode Arrays with Metal Cores

  • Tchoe, Youngbin;Lee, Chul-Ho;Park, Junbeom;Baek, Hyeonjun;Chung, Kunook;Jo, Janghyun;Kim, Miyoung;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.287.1-287.1
    • /
    • 2016
  • Three-dimensional (3-D) semiconductor nanoarchitectures, including nano- and micro- rods, pyramids, and disks, are emerging as one of the most promising elements for future optoelectronic devices. Since these 3-D semiconductor nanoarchitectures have many interesting unconventional properties, including the use of large light-emitting surface area and semipolar/nonpolar nano- or micro-facets, numerous studies reported on novel device applications of these 3-D nanoarchitectures. In particular, 3-D nanoarchitecture devices can have noticeably different current spreading characteristics compared with conventional thin film devices, due to their elaborate 3-D geometry. Utilizing this feature in a highly controlled manner, color-tunable light-emitting diodes (LEDs) were demonstrated by controlling the spatial distribution of current density over the multifaceted GaN LEDs. Meanwhile, for the fabrication of high brightness, single color emitting LEDs or laser diodes, uniform and high density of electrical current must be injected into the entire active layers of the nanoarchitecture devices. Here, we report on a new device structure to inject uniform and high density of electrical current through the 3-D semiconductor nanoarchitecture LEDs using metal core inside microtube LEDs. In this work, we report the fabrications and characteristics of metal-cored coaxial $GaN/In_xGa_{1-x}N$ microtube LEDs. For the fabrication of metal-cored microtube LEDs, $GaN/In_xGa_{1-x}N/ZnO$ coaxial microtube LED arrays grown on an n-GaN/c-Al2O3 substrate were lifted-off from the substrate by wet chemical etching of sacrificial ZnO microtubes and $SiO_2$ layer. The chemically lifted-off layer of LEDs were then stamped upside down on another supporting substrates. Subsequently, Ti/Au and indium tin oxide were deposited on the inner shells of microtubes, forming n-type electrodes of the metal-cored LEDs. The device characteristics were investigated measuring electroluminescence and current-voltage characteristic curves and analyzed by computational modeling of current spreading characteristics.

  • PDF

Quality Characteristics of Muffin added with Makgeolli Lees (주박 첨가량을 달리한 머핀의 품질 특성)

  • Yun, Chun-Sik;Kim, Hyun-Ah;Kim, Yong-Sik
    • Culinary science and hospitality research
    • /
    • v.21 no.3
    • /
    • pp.198-211
    • /
    • 2015
  • The following research was done to develop a low calorie muffin that has good taste, as well as nutritional benefit. This was done through adding various nutritional qualities of Makgeolli Lees to muffins. It was found that adding Makgeolli Lees substantially increased the amount of ash, crude protein, crude fiber, and moisture. However, it decreased the amount of crude fat. It was also found that the volume, height, and weight all increased with a lower baking loss rate. Other testing on the hardness, expand chewiness, gumminess, and cohesiveness of the muffins with different amounts of Makgeolli Lees found that more Makgeolli Lees led to a lower hardness and chewiness. However, it did not affect the gumminess. "MLM10" with 10 g of added Makgeolli Lees had a cohesiveness that was significantly different from other samples. The cohesiveness of the other samples was substantially lower. "L-value", or lightness, as well as yellowness, decreased as more Makgeolli Lees was added. On the other hand, "a-value", or redness, increased as more Makgeolli Lees was added. A sensory test proved that Makgeolli Lees added muffins were not preferred over the control group in its color, texture, and overall preference, but was evaluated as "good". However, the Makgeolli Lees added muffins were evaluated better than the control group in the categories of "expanded", "uniformity", and "he size of the pores". Therefore, creating muffins by using Makgeolli Lees instead of fat was proven to be possible, and furthermore proved to be a viable substitute.

Comparison of the Quality of Highland-Grown Kimchi Cabbage 'Choon Gwang' during Cold Storage after Pretreatments (수확 후 전처리에 의한 고랭지 배추 '춘광' 품종의 저온 저장 중 품질 변화에 대한 비교)

  • Bae, Sang Jun;Eum, Hyang Lan;Kim, Byung-Sup;Yoon, Jungro;Hong, Sae Jin
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.233-241
    • /
    • 2015
  • Kimchi cabbage 'Choon Gwang' cultivar that was grown in highlands in Gangneung was subjected to predrying, room cooling, and forced air cooling, and then packed with/without 0.02 mm HDPE film to investigate the effect of postharvest treatment on quality characteristics during 8 weeks storage at $2^{\circ}C$ (RH $90{\pm}5%$). Weight loss in forced air cooling and room cooling was lower than 3-4% with 0.02 mm HDPE film liner treatment during storage. However, it was only below 10% in room cooling without liner treatment and forced air cooling without liner treatment led to the highest weight loss, above 15%. Conversely, the control had lower weight loss than the others. SSC was $2-4^{\circ}brix$ for all treatments and there was no difference between postharvest treatments and liner treatments. Color index and firmness both showed no differences with/without 0.02 mm HDPE film and postharvest treatments. In sensory evaluation, forced air cooling with liner treatment was effective, with the highest score, especially in appearance and crispness. After 6 weeks, control kimchi cabbage without liner treatment was damaged seriously in appearance and the internal color had changed to brown. Room cooling and predrying with liner treatment changed the start of internal browning to after 8 weeks storage.

Physicochemical Characteristics of Fermented Milk Containing Mulberry Leaf Extract (뽕잎추출액을 첨가한 발효유의 이화학적 특성)

  • Ahn, Chang-Soon;Yuh, Chung-Suk;Bang, In-Soo
    • The Korean Journal of Food And Nutrition
    • /
    • v.22 no.2
    • /
    • pp.272-278
    • /
    • 2009
  • This study was carried out to evaluate the physicochemical characteristics of fermented milks containing mulberry leaf extract. The mulberry leaf extracts were added to fermented milk at $0{\sim}2.0%$. The pH, acidity, numbers of viable cells, chemical composition and color values of fermented milk preparation were analyzed, and these samples were subjected to a taste test panel. As the ratio of mulberry leaf extract increased, the pH value of the fermented milk decreased proportionally and acidities increased significantly. The numbers of viable cells was highest in the fermented milk sample containing 0.5% mulberry leaf extract. In the chemical composition analyses, increases in the concentration of mulberry leaf extract led to a significant increase in crude protein, crude fat, and crude ash contents and a significant decrease in lactose content. Ca, Mg and K in the fermented milk were also significantly increased with the addition of mulberry leaf extract. As mulberry leaf extract amount increased, the lightness and redness values decreased, while the yellowness value increased. From the sensory evaluation of the fermented milk containing mulberry leaf extract, color, taste, texture and overall acceptability of the fermented milk sample containing 1% mulberry leaf extract was found to be much better than those of the other groups.

Quality characteristics of functional Nokdujuk prepared with optimum mixing ratio of mulberry leaf and fruit powder by response surface method (반응표면분석법을 이용한 최적 비율의 뽕잎과 오디 분말 첨가 기능성 녹두죽의 품질특성)

  • Kim, Min-Ju;Kim, Ae-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.699-709
    • /
    • 2017
  • This study was performed to develop and evaluate functional prepared with optimum mixing of mulberry leaf and fruit powder using response surface method (RSM). In order to develop the optimized functional Nokdujukr using RSM, mulberry leaf powder (MLP:X1) and mulberry fruit powder (MLF:X2) were set as independent variables, and pH (Y1), sweetness (Y2), viscosity (Y3), L (Y4), a (Y5), b (Y6), color (Y7), flavor (Y8), taste (Y9), overall quality (Y10), TPC (Y11), and DPPH radical scavenging ability ($IC_{50}$)(Y12) were set as dependent variables. The optimum mixing ratio of MLP and MLF was determined to be 3.88 g of MLP and 6 g of MLF. The values of color, flavor, taste, overall quality, TPC, and DPPH radical scavenging ability ($IC_{50}$) of optimized Nokdujuk were 5.20, 5.85, 6.00, 6.22, 330.99 mg TAE/g and 650.10 g/mL, respectively. In conclusion, this study has led to the development of an improved version of Nokdujuk that has antioxidative properties and good sensory evaluation and, will likely serve as a functional meal replacement for the busy modern world.

The Next Wave in Display Innovation

  • Webster, Steven C.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.4-4
    • /
    • 2008
  • The progress in flat panel displays over the last two decades has been astonishing. In just 20 years, the LCD-TV grew up from a 2-inch curiosity, to an industry that will sell about 120 million flat panel TV's this year, with viewing area up to 4000 times larger. That success is based on continuous innovation, especially in manufacturing processes. For the next decade to bring another doubling of the business, progress will need to continue in four major areas: Human factors, ecological impact, visual quality, and of course continued drive towards affordability. This talk will detail the technology advances that can allow this industry to meet those challenges. Human factors. Today, we adapt our lifestyle to our technology. People organize their offices, and their homes, around displays. We pass around mobile phones to share images, rather than experiencing them as a group. Billions of newspapers continue to be sold daily. Advances in flexible displays can lead to large portable displays. "New era projection" includes the handheld Pico Projectors that are already on the market, and will ultimately appear integrated in mobile phones the same way cameras do today. "Eco" impact. Today TV's are one of the top energy consumers in a U.S. home, and the fastest growing. Watching a large flat panel TV can cost twice as much as running a large refrigerator. With today's concern about energy consumption, regulations are starting to emerge worldwide to limit TV electrical use. Fortunately, good solutions exist in using light management films to eliminate bulbs, saving power without increasing cost. Going forward, LED backlights will drive another step downward. OLED displays might be the ultimate solution. Visual quality. The color of an LCD-TV is still often considered inferior to a far less expensive CRT. And almost all displays suffer from representing a three-dimensional world on a two dimensional surface. The technology to improve color is available today, and will likely move from premium sets into the mainstream as costs come down. 3D is now arriving in movie theaters worldwide, and that will drive up the demand for similar realistic images in home theaters. And the technology is emerging today for 3D representation to move beyond specialized applications into everyday use, on screens large and small. Affordability. The world takes cost-down miracles for granted in consumer electronics. Each of these other advances will be balanced with a drive for affordability, especially as the market grows in emerging countries. The other three challenges must be met without increasing cost. Putting this all together, the next few years will emphasize "eco friendly" designs, and enhanced images such as 3D. By 2013 we will start to see serious penetration by emissive technologies (OLED, high efficiency plasma, or other), with the "ultimate display" likely not in the market for a decade. Lots of opportunities for innovation remain ahead of us.

  • PDF