• Title/Summary/Keyword: LED brightness control

Search Result 113, Processing Time 0.024 seconds

Desktop-LED lighting for Eye Muscle Movement by Adjusting the Light Illuminance and Color Temperature

  • Kim, Byoung-Chul;Kim, Seon-Jong;Kim, Joo-Man
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.203-208
    • /
    • 2020
  • In this paper, we propose the design and implementation of a desktop LED stand and smart app that automatically adjusts color temperature and illuminance for optimal brightness and eye health by improving the structural problem of the LED stand. It is a tabletop LED stand that supports optimal brightness through color temperature control and heat transfer through infrared LED to relieve eye strain through blood circulation and muscle movement. The LED stand works with the smartphone to automatically adjust the optimal brightness and color temperature for the user's environment. In addition, the brightness of the infrared LED is adjusted to a living frequency of 4Hz to relax the eye muscles and reduce eye strain. This study implemented an effective measured data-based system of previous studies through the color temperature and illumination of LED lighting, and near-infrared rays, and presented meaningful results by conducting an experiment to prove the effect through subjects.

Development of the Full color LED displays using the control algorithm of histogram distribution (히스토그램 분포 제어가 가능한 풀칼라 LED 디스플레이장치 개발)

  • Ha, Young-Jae;Jin, Byung-Yun;Kim, Sun-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1708-1714
    • /
    • 2010
  • In this paper, the full color LED billboard or a general quality improvement methods of quality gamma correction, brightness, and brightness adjustment, etc., regardless of the overall color of images uniformly bright or dark have been taken care of. The video itself, but simply expressed as a uniform brightness of a certain size, how to adjust the brightness of input video signal does not reflect the characteristics of the entire screen with just a lighter or darker line is only feeling was brought. So, unlike conventional video transmission system with new LED display technology in the histogram analysis of image data is input by the input image data by determining the luminance values of the attributes are reflected, as appropriate based on the histogram of the distribution of brightness values By controlling the LED display is expressed in the uniform image can improve the brightness control, histogram distribution of the image as full color billboards driven processing technology is proposed.

Implementation of a LED light control module using Zigbee (Zigbee를 이용한 LED 조명 제어 모듈 구성)

  • Jang, Young-Ho;Kim, Hwan-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4740-4744
    • /
    • 2012
  • The purpose of this paper was to make a LED light control module using Zigbee. The module was made so that brightness of the LED light changes according to the ambient brightness. A 8-bit microcontroller was used to implement the module to enable LED dimming and wireless light intensity measurement. Using the proposed method, power consumption can be improved by up to 48% on average, with 3.4-0.4W changes in power. The measured ambient light intensity values are converted from analog to digital and outputted as a PWM waveform. According to the output waveform and changes in the current outputted from the LED driver, the brightness of the LED light is controlled. Also, Zigbee with close-range wireless communication capabilities was used to enable wireless transmission of light intensity measurements.

Alternating Current (AC) Powered LED Lighting Technology with Constant Brightness (빛의 밝기가 일정한 교류 구동 LED 조명기술)

  • Lee, Dong Won;Ahn, Ho-Myoung;Kim, Byungcheul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.466-470
    • /
    • 2022
  • In order to widely disseminate LED lighting, LED lighting technology that directly uses AC commercial power has been recently introduced. AC powered LED lighting technology has a problem in that the light brightness of the LED changes because the voltage applied to the LED and the current flowing through the LED continuously change. In this study, when the LED current is greater than the design current, the current control signal generated by the controller is supplied to the current source to supply only the design current to the LED by increasing the voltage drop at the current source. If it is smaller than the design current, the controller is adjusted so that the current is supplied only to the LED without a voltage drop in the current source. It can be seen that the higher the maximum rectified voltage, the faster the lighting time of the LED light emitting block is, so that the power factor of the LED lighting is improved. The LED lighting technology proposed in this study enables LED lighting with constant light brightness, reduced power consumption, and long lifetime.

Using High Brightness LED Light Source Controller for Machine Vision (고휘도 LED를 이용한 머신비전용 조명광원 제어기 개발)

  • Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.311-318
    • /
    • 2014
  • This paper is to introduce a lighting source controller using high brightness LED to create a clear and reliable condition for an accurate measurement and testing, which is a core technology in clinical image system and mechanical automation system. This controller is designed to supply a stable power in a constant-current system by installing a high brightness LED driver, and to improve the reproducibility of brightness by using 32-bit ARM processor core, dividing brightness quantity into 256 levels, making the remote control and the external interface possible, and preventing and digitizing the brightness inaccuracy caused by errors of resistance values. This controller enables the lighting range to be wide and possible in a low lighting level compared to analog, adds the RS-485 communication function, and makes it for the users to control the on-off function and the dimming level by receiving date from an external device.

A Study of the Stable Colors Variation Circuit of High Brightness LEDs (고휘도 LED의 광색가변 회로에 관한 연구)

  • Yu, Yong-Su;Song, Sang-Bin;Yeo, In-Seon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.8
    • /
    • pp.390-396
    • /
    • 2002
  • This paper Presents to choose number of RGB LED through optical special quality analysis of RGB LED samples and to produce ratio of RGB LED for a stable color variation and white light. Also, it is to design of a simple switching circuit using some resistances and switching transistors that is able to operate each 16 RGB LED stably, and switching control circuit base on a microcontroller that would be suitable for colors variation patterns control more than about 64 patterns and colors variation more than about 100,000 colors using ON/OFF and Duty control.

A study of LED light control system application based on Ubiquitous sensor network (유비쿼터스 센서 네트워크 기반 LED 조명제어시스템 적용에 관한 연구)

  • Lee, An-kyu;Park, Byung-don;Gil, Jun-pyo;Shin, Gang-wook;Park, Hye-Mi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.188-191
    • /
    • 2013
  • In this paper, in order to economize energy inside the vertical-type water treatment plant, a chamber-illumination-LED control board, which operates via nature light or human's touches, is proposed. Moreover, this illumination control process is contrived to be wirelessly monitored in real-rime. In addition, Zigbee communication code is programmed to implement the control board's function of wireless data transmission and automatic LED brightness control. The presented control method contrives brightness to be adjusted in real-time by dimming control, which means nature light changes control, so that the interior energy can realize the maximum energy conservation.

  • PDF

The Color Temperature Flexibility-typed LED Lighting Control System (색온도 가변형 LED 조명제어시스템)

  • Kim, Hye-Myeong;Yang, Woo-Seok;Cho, Young-Seek;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.284-288
    • /
    • 2015
  • The color temperature flexibility-typed Lighting Emitting Diode(LED) lighting control system proposed in this thesis employs Pulse Width Modulation(PWM) technique to control the brightness of LED lighting. The LED lighting used as a light source has 20W downlight composed of two types of LED chips: one is Warm White and the other is Cool white. One multi-sensor module consisting an infrared sensor, an illumination sensor, and a temperature sensor was made, to which Bluetooth wireless communication technique was applied to enable a smartphone application to control lighting brightness and identify the information collected from the sensor. CS-1000, a spectroradiometer, was used to measure LED dimming control and the changing values of a color temperature in eight steps. According to a test, it was found that it was possible to change a color temperature from 3187K of Warm White LED to 5600K of Cool White LED.

4-channel Light Medical Therapy Apparatus for External Injury Cure (체외 상처 치유를 위한 4-채널 광 치료기)

  • Cheon, Min-Woo;Kim, Seong-Hwan;So, Keum-Young;Moon, Young-Lae;Mun, Seong-Pyo;Park, Yong-Pil;Lee, Ho-Sik;Kim, Tae-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.731-735
    • /
    • 2007
  • We developed the 4channel Light Medical Therapy Apparatus for External Injury Cure using a high brightness LED. This equipment was fabricated using a micro-controller and a high brightness LED, and designed to enable us to control light irradiation time, intensity, frequency and so on, Especially, to control the light irradiation frequency, FPGA was used, and to control the change of output value, TLC5941 was used. Control stage is divided into 4 levels by program. Consequently, the current value could be controlled by the change of level in Continue Wave(CW) and the output of a high brightness LED could be controlled stage by stage. Compared with one LED irradiation, several LEDs irradiation could increase optical power.

The Effect of LED Light Irradiation on Skin Injury Cure of Rat (LED 광원이 Rat의 피부 창상 치유에 미치는 영향)

  • Cheon, Min-Woo;Kim, Seong-Hwan;Park, Yong-Pil;Kim, Tae-Gon;Yu, Seong-Mi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1087-1092
    • /
    • 2007
  • We developed the 4-channel Light Medical Therapy Apparatus for Skin Injury Cure using a high brightness LED. This equipment was fabricated using a micro-controller and a high brightness LED, and designed to enable us to control light irradiation time, intensity and reservation. In this paper, the designed device was used to find out how high brightness LED light affects the skin injury of SD-Rat(Sprague-Dawley Rat). In the experiment, $1\;cm^2$ wounds on the skin injury of SD-Rat(Sprague-Dawley Rat) were made. Light irradiation group and none light irradiation group divided, each group was irradiated one hour a day for 14 days. In result, compared with none light irradiation group, the lower incidence of inflammation and faster recovery was shown in light irradiation group.