• Title/Summary/Keyword: LED 식물공장

Search Result 86, Processing Time 0.021 seconds

Thermal Flow Characteristics of a Hybrid Plant Factory with Multi-layer Cultivation Shelves (다층 재배선반을 갖는 하이브리드 식물공장의 열유동 특성)

  • Yoon, Ji-Hwan;Ryu, Bong-Jo;Kim, Youngshik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7990-8000
    • /
    • 2015
  • Plant factories are plant cultivation systems which produce farm products uniformly under the controlled environmental condition regardless of seasons and places. Thermal flow in the plant factory is an important parameter in cultivating plants. In this research, we study thermal flow characteristics for a hybrid plant factory with multi-layer cultivation shelves using computer simulation techniques. In order to obtain numerical solutions for thermal flow characteristics, a finite volume method was applied. We consider a low-Reynolds-number ${\kappa}-{\epsilon}$ turbulence model, incompressible viscous flows, and pressure boundary conditions for numerical simulation. Commercial software Solid Works Flow Simulation is then used to investigate characteristics of thermal flows in the plant factory applying several different inflow air velocities and arrangements of cultivation shelves. From numerical analysis results, we found that temperatures in cultivation shelves were uniformly distributed for Case 3 when the inflow air velocity was 1.6 m/s by using a blower in the plant factory. However in Case 1 lower temperature distributions were observed in test beds, TB2 and TB3, which indicated that additional temperature control efforts would be required. Average shelf temperature increased by $3^{\circ}C$ using artificial light source (DYLED47) with 50% blue and 50% red LED ratios. Korea Academia-Industrial cooperation Society.

Un-Cooled High Efficient Solar Lighting System and its Application (비냉각형 고효율 태양광 채광시스템 및 응용에 관한 연구)

  • Lee, Hoe-Youl;Kim, Myoung-Jin;Shin, Seo-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11B
    • /
    • pp.1394-1402
    • /
    • 2011
  • This paper describes solar light collecting system which employs parabolic reflector and Fresnel lens and its industrial application. We have introduced second-stage optical system so that it makes optical fiber overcome its numerical aperture limitation and also it makes focused light become collimated, which results in decreased light energy density. As result of these, light collecting efficiency become maximized and the system does not require separate cooling apparatus any more. The developed solar lighting system together with artificial light source like LED has been applied to plant factory as a hybrid lighting source. This makes us save electric energy for artificial lighting during day time. The intensity of LED light in the hybrid lighting system is controlled automatically according to ambient-light-sensor installed in the system so that the light intensity for a plant always keeps the same level no matter how the sun light changes. For a plant factory whose size is 330 square meters, when solar lighting system is applied, 28,080KWh electric energy can be saved per month.2 times.

PLC Automatic Control for IOT Based Hydroponic Plant Factory (IOT 기반 수경재배 식물공장을 위한 PLC 자동제어)

  • Ko, Jin-Han;Kim, Ho-Chan
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.487-494
    • /
    • 2019
  • In this paper, we designed IOT(Internet of Things) based hydroponic plant factory in order to avoid the effects of fine dust penetrating into the soil, and proposed the PLC(Programmable Logic Controller) control methods. The designed plant factory could monitor the density of oxygen, the density of nutrient solution, temperature and humidity through touch screen and smart phone, and control the heater and cooler, ventilation and dehumidifier, and wavelengths of LEDs to grow plant in appropriate environments.

A Study on Lighting system implementation for Automated Cultivation of product (농작물 재배자동화를 위한 조명시스템 구현에 관한 연구)

  • Cho, Young-Seok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.165-166
    • /
    • 2015
  • 본 논문에서는 식물공장에서 사용할 수 있는 파장별 광원제어가 가능한 조명장치의 설계하고 구현하고자 한다. 식물의 생장에 필수적인 광원의 파장에 따라 생장에 다양한 영향을 미치게 된다. 따라서 본 논문에서는 식물 생장에서 필요한 다양한 파장의 빛을 공급할 수 있는 식물공장용 조명시스텡을 개발한다. 조명시스템은 마이크로 컴퓨터를 이용하여 적, 청, 녹색 3색 LED를 PWM제어하여 광량과 세기를 제어하고, 공급된 광량을 적산하여 조사된 광량을 확인할 수 있도록 구성하였다. 본 조명 시스템은 태양광 이용형 식물공장의 보조광원으로 사용 가능하며, 완전제어형 식물공장에서 사용이 가능하다.

  • PDF

Design and Implementation of Integration Control Monitoring System for Fully Artificial Plant Factory based on Sensor Network (센서 네트워크 기반 완전제어형 식물공장의 통합 제어 모니터링 시스템 설계 및 구현)

  • Kim, Hyung-Sun;Kwon, Sook-Youn;Ryu, Jae-Bok;Yu, Tae-Hwan;Lim, Jae-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.679-682
    • /
    • 2011
  • 본 논문에서는 완전제어형 식물공장에서 작물이 생육하는데 필요한 재배환경들의 모니터링 및 제어가 가능한 센서 네트워크 기반의 식물공장 통합 제어 시스템을 설계 및 구축한다. 제안한 시스템은 완전제어형 식물공장에서 각 재배단의 환경 정보를 수집하기 위해 통합 환경정보 센서 및 전력 제어 센서를 설치하고, 통합 컨트롤러를 통해 LED 조명의 제어가 가능하도록 설계 하였다. 환경정보 센서는 온도, 습도, CO2의 데이터가 실시간으로 수집되며 전력제어 센서는 실시간 사용되는 전력량 데이터가 수집 가능하며 센서를 통해 전력의 차단 및 공급이 가능하도록 설계 하였다. 본 시스템은 크게 모니터링과 제어로 구분되며 테스트 베드의 구축을 통해 실시간 환경정보 센서 데이터 수집이 가능하고, LED 조명 및 전력을 제어가 가능함을 확인하였다.

  • PDF

A Smart Farming System Based on Visible Light Communications (가시광 무선통신 기반의 스마트 농업 시스템)

  • Yeom, Tae-Hwa;Park, Sung-Mi;Kwon, Hye-In;Hwang, Duck-Kyu;Kim, Jeongchang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.5
    • /
    • pp.479-485
    • /
    • 2013
  • In this paper, we propose a smart farming system using the visible light communication based on the software defined radio (SDR) technology and the conventional RF radio. The proposed system can continuously monitor growth environments of the LED plant factory and automatically control the LED plant factory to keep optimal growth environments. Furthermore, by creating a database from various growth factors, the LED plant factory can be efficiently managed.

Enhanced biosynthesis of artemisinin by environmental stresses in Artemisia annua (환경스트레스 처리에 의한 개똥쑥 artemisinin 생합성 증진)

  • Kyung Woon Kim;Cheol Ho Hwang
    • Journal of Plant Biotechnology
    • /
    • v.49 no.4
    • /
    • pp.307-315
    • /
    • 2022
  • Artemisinin is a secondary metabolite of Artemisia annua that shows potent anti-malarial, anti-bacterial, antiviral, and anti-tumor effects. The supply of artemisinin depends on its content in Artemisia annua, in which various environmental factors can affect the plant's biosynthetic yield. In this study, the effects of different light-emitting diode (LED)-irradiation conditions were tested to optimize the germination and growth of Artemisia annua for the enhanced production of artemisinin. Specifically, the ratio between the red and blue lights in the irradiating LED was varied for investigation as follows: [Red : Blue] = [6 : 4], [7 : 3], and [8 : 2]. Furthermore, additional stress factors like UV-B-irradiation (1,395 ㎼/cm2), low temperature (4℃), and dehydration were also explored to induce hormetic expressions of ADS, CYP, and ALDH1, which are essential genes for the biosynthesis of artemisinin. Quantitative polymerase chain reaction (qPCR) was used to analyze the expression levels of the respective genes and their correlation with the specified conditions. [8 : 2] LED-irradiation was the most optimal among the tested conditions for the cultivation of Artemisia annua in terms of both fresh and dry weights post-harvest. For the production of artemisinin, however, [7 : 3] LED-irradiation with dehydration for six hours pre-harvest was the most optimal condition by inducing around twofold enhancement in the biosynthetic yield of artemisinin. As expected, a correlation was observed between the expression levels of the genes and the contents of artemisinin accumulated.

Optimal Layout Simulation and Verification of LED Lighting for Improvement of Light Uniformity in Plant Factory (식물공장의 광 균일도 향상을 위한 LED 최적 배치 시뮬레이션 및 검증)

  • Lee, Hwa-Soo;Kwon, Sook-Youn;Lim, Jae-Hyun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.381-383
    • /
    • 2012
  • 식물재배용 인공광 최적 배치에 따른 균일한 조도 분포는 고품질의 식물 생산을 가능하게 한다. 그러나 기존에 상용화된 식물재배시스템의 경우, 인공광 배치에 따른 조도 분포 시뮬레이션 등의 전처리 과정이 생략된 채 제작되어 생산 품질의 편차를 초래하는 문제점을 가지고 있다. 이에 본 논문은 식물재배단의 광 균일도 향상을 위해 조명 설계 소프트웨어인 Relux를 이용하여 LED 조명장치의 높이, 간격 등의 배치를 달리함에 따라 변화하는 각 재배단의 조도 분포 및 균일도, 그리고 전체 에너지 소비량 등을 사전에 시뮬레이션 함으로써 대상 식물재배에 적합한 조명장치의 최적 위치를 파악하고자 한다. 또한, 포터블 조도측정기를 이용하여 재배단의 각 식물의 위치를 기준으로 실 측정한 결과 데이터와 비교 분석 과정을 거쳐 본 시뮬레이션 결과의 신뢰도를 입증하고자 한다.

Improvement of Canopy Light Distribution, Photosynthesis, and Growth of Lettuce (Lactuca Sativa L.) in Plant Factory Conditions by Using Filters to Diffuse Light from LEDs (LED 식물공장에서 산란 유리 이용에 의한 상추(Lactuca Sativa L.)의 군락 광분포, 광합성 및 생장 향상)

  • Kang, Woo Hyun;Zhang, Fan;Lee, June Woo;Son, Jung Eek
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.84-93
    • /
    • 2016
  • Plant factories with artificial lights require a large amount of electrical energy for lighting; therefore, enhancement of light use efficiency will decrease the cost of plant production. The objective of this study was to enhance the light use efficiency by using filters to diffuse the light from LED sources in plant factory conditions. The two treatments used diffuse glasses with haze factors of 40% and 80%, and a control without the filter. For each treatment, canopy light distribution was evaluated by a 3-D ray tracing method and canopy photosynthesis was measured with a sealed acrylic chamber. Sixteen lettuces for each treatment were cultivated hydroponically in a plant factory for 28 days after transplanting and their growth was compared. Simulation results showed that the light absorption was concentrated on the upper part of the lettuce canopy in treatments and control. The control showed particularly poor canopy light distribution with hotspots of light intensity; thus the light use efficiency decreased compared to the treatments. Total light absorption was the highest in the control; however, the amount of effective light absorption was higher in treatments than the control, and was highest in treatment using filters with a haze factor of 80%. Canopy photosynthesis and plant growth were significantly higher in all the treatments. In conclusion, application of the diffuse glass filters enhanced the canopy light distribution, photosynthesis, and growth of the plants under LED lighting, resulting in enhanced the light use efficiency in plant factory conditions.