• Title/Summary/Keyword: LEAF AREA INDEX

Search Result 403, Processing Time 0.024 seconds

Vulnerability Assessment of Rice Production by Main Disease and Pest of Rice Plant to Climate Change (기후변화에 따른 주요 벼 병해충에 의한 벼 생산의 취약성평가)

  • Kim, Myung-Hyun;Bang, Hea-Son;Na, Young-Eun;Kim, Miran;Oh, Young-Ju;Kang, Kee-Kyung;Cho, Kwang-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.147-157
    • /
    • 2013
  • Rice is a main crop and rice field is the most important farmland in Korea. This study was conducted to propose the methodology assessing impact and vulnerability on rice production by climate change at the regional and national level in Korea. We evaluated a vulnerability of rice paddy according to the outbreak of a main disease and pest of a rice plant. As results, Jeju-do, Gyeongsangnam-do, and Jeollanam-do were more vulnerable area than others. In contrast, the southern central region including Gyeonggi-do was less vulnerable than others. The vulnerable index was significantly higher in 2050s (0.5589) than in present (0.3500). This result showed that the vulnerable to the disease and pest enlarge in the future. The adaptive capacity highly contributed to the vulnerability assessment index. The daily maximum temperature of June and the daily average temperature from May to August also contributed the climate exposure index. The area of occurring sheath blight, rice leaf blast and striped rice borer was related to the system sensitivity index. The ability of water supply (readjustment area of arable land per paddy field area) and rice production technique (rice yield per hectare) were the highly contributed variables to the adaption capacity index.

Leaf Shape Index, Growth, and Phytochemicals in Two Leaf Lettuce Cultivars Grown under Monochromatic Light-emitting Diodes (단색 발광다이오드에서 자란 축면상추 두 품종의 엽형, 생장 및 기능성 물질)

  • Son, Ki-Ho;Park, Jun-Hyung;Kim, Daeil;Oh, Myung-Min
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.664-672
    • /
    • 2012
  • As an artificial light source, light-emitting diode (LED) with a short wavelength range can be used in closed-type plant production systems. Among various wavelength ranges in visible light, individual light spectra induce distinguishing influences on plant growth and development. In this study, we determined the effects of monochromatic LEDs on leaf shape index, growth and the accumulation of phytochemicals in a red leaf lettuce (Lactuca sativa L. 'Sunmang') and a green leaf lettuce (Lactuca sativa L. 'Grand rapid TBR'). Lettuce seedlings grown under normal growing conditions ($20^{\circ}C$, fluorescent lamp + high pressure sodium lamp, $130{\pm}5{\mu}mmol{\cdot}m^{-2}{\cdot}s^{-1}$, 12 hours photoperiod) for 18 days were transferred into incubators at $20^{\circ}C$ equipped with various monochromatic LEDs (blue LED, 456 nm; green LED, 518 nm; red LED, 654 nm; white LED, 456 nm + 558 nm) under the same light intensity and photoperiod ($130{\pm}7{\mu}mmol{\cdot}m^{-2}{\cdot}s^{-1}$, 12 hours photoperiod). Leaf length, leaf width, leaf area, fresh and dry weights of shoots and roots, shoot/root ratio, SPAD value, total phenolic concentration, antioxidant capacity, and the expression of a key gene involved in the biosynthesis of phenolic compounds, phenylalanine ammonia-lyase (PAL), were measured at 9 and 23 days after transplanting. The leaf shape indexes of both lettuce cultivars subjected to blue or white LEDs were similar with those of control during whole growth stage. However, red and green LEDs induced significantly higher leaf shape index than the other treatments. The green LED had a negative impact on the lettuce growth. Most of growth characteristics such as fresh and dry weights of shoots and leaf area were the highest in both cultivars subjected to red LED treatment. In case of red leaf lettuce plants, shoot fresh weight under red LED was 3.8 times higher than that under green LED at 23 days after transplanting. In contrast, the accumulation of chlorophyll, phenolics including antioxidants in lettuce plants showed an opposite trend compared with growth. SPAD value, total phenolic concentration, and antioxidant capacity of lettuce grown under blue LED were significantly higher than those under other LED treatments. In addition, PAL gene was remarkably activated by blue LED at 9 days after transplanting. Thus, this study suggested that the light quality using LEDs is a crucial factor for morphology, growth, and phytochemicals of two lettuce cultivars.

An Efficient Technique for Processing Frequent Updates in the R-tree (R-트리에서 빈번한 변경 질의 처리를 위한 효율적인 기법)

  • 권동섭;이상준;이석호
    • Journal of KIISE:Databases
    • /
    • v.31 no.3
    • /
    • pp.261-273
    • /
    • 2004
  • Advances in information and communication technologies have been creating new classes of applications in the area of databases. For example, in moving object databases, which track positions of a lot of objects, or stream databases, which process data streams from a lot of sensors, data Processed in such database systems are usually changed very rapidly and continuously. However, traditional database systems have a problem in processing these rapidly and continuously changing data because they suppose that a data item stored in the database remains constant until It is explicitly modified. The problem becomes more serious in the R-tree, which is a typical index structure for multidimensional data, because modifying data in the R-tree can generate cascading node splits or merges. To process frequent updates more efficiently, we propose a novel update technique for the R-tree, which we call the leaf-update technique. If a new value of a data item lies within the leaf MBR that the data item belongs, the leaf-update technique changes the leaf node only, not whole of the tree. Using this leaf-update manner and the leaf-access hash table for direct access to leaf nodes, the proposed technique can reduce update cost greatly. In addition, the leaf-update technique can be adopted in diverse variants of the R-tree and various applications that use the R-tree since it is based on the R-tree and it guarantees the correctness of the R-tree. In this paper, we prove the effectiveness of the leaf-update techniques theoretically and present experimental results that show that our technique outperforms traditional one.

Effect of Soil Moisture on Nitrogen Fixation Activity of Rhizobium in Soybean (토양수분 차이가 대두 근류균의 질소고정에 미치는 영향)

  • 김용철;최인수
    • Journal of Life Science
    • /
    • v.12 no.5
    • /
    • pp.544-548
    • /
    • 2002
  • The object of this study was to investigate nitrogen fixation activity of rhizobium inoculated at seed coat when drought condition was applied in flowering period of soybean c.v. Samnamkong. The rhizobia used in this experiment were indigenous rhizobium, R2l4, RJl-29, USDA110 and USDA122. The experiment was done with 1/2000 Wagner pots in laboratory and greenhouse and was tested in completely randomized design with four replications. Nitrogen fixation activity in coventional culture was the highest in R2l4 and indigenous rhizobium among the five rhizobia strains. As given drought condition from flowering to maturity, nitrogen fixation activity was higher in R2l4 and RJl-29 than indigenous rhizobium. Leaf area and relative index (drought/convention) of pod weight were higher in USDA122, RJl-29 and R2l4 than indigenous rhizobium as given drought condition from flowering to maturity. High positive correlation was observed between nitrogen fixation activity of rhizobium and relative index(drought/convention) of pod weight. High negative correlation was observed between respiration of plant and relative index (drought/convention) of leaf area.

Responses of Soybean Genotypes to Different Levels of Irrigation

  • Rabbani, M.F.;Ashrafuzzaman, M.;Hoque, A.M.;Karim, M.Abdul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.2
    • /
    • pp.131-135
    • /
    • 2004
  • To find out the responses of soybean genotypes in terms of different levels of irrigation with the aim of evaluating the growth, yield, and its optimum levels of irrigation, an experiment was conducted at the Field of Crop Botany Department, Bangladesh Agricultural University, Mymensingh during the period from November 2000 to February 2001. Five levels of irrigation viz. $\textrm{I}_0$: no irrigation, $\textrm{I}_1$: one time irrigation at 20 days after sowing (DAS), $\textrm{I}_2$:two times irrigation at 20 and 40 DAS, $\textrm{I}_3$: three times irrigation at 20, 40, and 60 DAS, and $\textrm{I}_4$: four times irrigation at 20, 40, 60, and 80 DAS and three genotypes of soybean viz. BS-3, BS-16, and BS-60 were used in this experiment. The crop was grown in a split plot design having three replications. The plant height, leaf area index, crop growth rate, shoot dry weight, branches $\textrm{plantI}_{-1}$, filled pods $\textrm{plantI}_{-1}$, seeds $\textrm{plantI}_{-1}$, seed yield, and harvest index were influenced significantly by irrigation and these were found to be highest at three times irrigation except branches $\textrm{plantI}_{-1}$. The chlorophyll content increased but empty pods $\textrm{plantI}_{-1}$ decreased with increase in irrigation levels. Genotypes of soybean varied significantly in terms of growth attributes at various growth stages except shoot dry weight at 90 DAS. The genotype BS-3 performed better compared to other genotypes and gave maximum seed yield.

Status, Protection, and Management of Bird Community in Mt. Nam Area (남산 지역 조류 군집의 서식 현황과 보호 및 관리방안)

  • 이우신;조기현;임신재
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_3
    • /
    • pp.665-673
    • /
    • 1998
  • This study was conducted to clarified the relationship between bird community and forest structure and present the counterplan for protection and management of bird community from February 1993 to July 1995 at deciduous and coniferous forest within Mt. Nam area, Seoul, Korea. DBH distribution has not significant differences in each study site. Deciduous forest had more foliage coverage in all layers than coniferous forest. Total 41 species of birds, which were 16 species of resident, 14 species of summer visitor, 4 species of winter visitor, and 7 species of passage migrant were recrded in two study sites. Leaf use rate of birds was increased the increase of coverage. The number of breeding species and pairs, breeding density, and diversity index were greater in deciduous forest than coniferous forest. The number of species and pairs on bush-nesting and foraging guild were greater than other guilds. And the nuber of species and pairs on hole nesting guild were the fewest in nesting guild. Use rate of artificial nests for improvement of habitat quality was greater in coniferous forest than deciduous forest. Maintenance of bush layer, increase of coverage and leaf layer diversity, supply of artificial nests, management of large trees, and control of natural enemy were necessary for protection and management of bird community in Mt. nam area.

  • PDF

Response of Millet and Sorghum to Water Stress in Converted Poorly Drained Paddy Soil

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Chang-Young;Hwang, Jae-Bok;Choi, Young-Dae;Oh, In-Seok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.409-416
    • /
    • 2013
  • Millet and sorghum are major dryland cereal crops, however their growth and productivity is limited by soil water stress with varying intensity. The major objective of this study was to evaluate water stress of millet and sorghum yield under drainage classes of poorly drained soil and to test the effect of the installed pipe drainage in poorly drained paddy soil to minimize crop stress. The research was carried out in poorly drained paddy fields located at alluvial slopping area resulting in non-uniform water content distribution by the inflow of ground water from the upper part of the field. Stress Day Index (SDI) was determined from a stress day factor (SD) and a crop susceptibility factor (CS). SD is a degree of measurement by calculating the daily sum of excess water in the profile above 30cm soil depth ($SEW_{30}$). CS depends on a given excess water on crop stage. The results showed that sum of excess water day ($SWD_{30}$) used to represent the moisture stress index was lower on somewhat poorly drained soil compared with poorly drained soil on 117 days. CS values for sorghum were 57% on $3^{rd}$ leaf stage, 44% on $5^{th}$ leaf stage, 37% on panicle initiation, 23% on boot stage, and 16% on soft dough stage. For proso millet CS values were 84% on $3^{rd}$ leaf stage, 70% on $5^{th}$ leaf Stage, 65% on panicle initiation, 53% on boot stage, and 28% on soft dough stage. And for foxtail millet the values were 73% on $3^{rd}$ leaf stage, 61% on $5^{th}$ leaf stage, 50% on panicle initiation, 29% on boot stage, and 15% on soft dough stage. SDI of sorghum and millet was more susceptible to excess soil water during panicle initation stage more poorly drained soil than somewhat poorly drained soil. Grain yield was reduced especially in proso millet and Foxtail millet compared to Sorghum.

Role of Mesophyll Morphology in Determination of Leaf Photosynthesis in Field Grown Soybeans (포장생육대두의 엽광합성과정에서 엽육세포 형태의 역할)

  • Yun, Jin Il;Lauer, Michael J.;Taylo, S.Elwynn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.6
    • /
    • pp.560-567
    • /
    • 1991
  • Photosynthetic variation in field grown soybean [Glycine max (L.) Merr. cv Hodgson78] was studied in relation to leaf anatomical variation. Variations in mesophyll morphology were accentuated by manipulating source and sink size. At R3 stage, two treatments were started: one was thinning and continu-ous debranching(6. 5 plants rather than 26 plants per m of row and remaining plants were debranched weekly), and the other was continuous partial depodding (allowing only one pod to develop at each mainstem node). Gas exchange characteristics, mesophyll cell volume and surface area per unit leaf surface, and microclimatic parameters were measured on the intact terminal leaflet at the 10th node. Observations were made 5 times with 3 to 4 day intervals starting R4 stage. Two models were used to compute leaf photosynthetic rates: one considered no effect of mesophyll morphology on photosynthesis, and the other considered potential effects of variations in mesophyll cell volume and surface area on diffusion and biochemical processes. Seventy nine percent of total photosynthetic variations observed in the experiment was explained by the latter, while 69% of the same variations was explained by the former model. By incorporating the mesophyll morphology concept, the predictability was improved by 14.6% in the field condition. Additional Index Words: photosynthesis model, leaf anatomy, Glycine max (L.) Merr., mesophyll surface area, mesophyll cell volume.

  • PDF

Measurement of $\textrm{CO}_2$ Concentration and Leaf Area Index for Crop Photosynthesis Model in Sweet Pepper (단고추의 작물 광합성 모델을 위한 $\textrm{CO}_2$ 농도와 엽면적지 수 측정)

  • Lee, Beom-Seon;Chung, Soon-Ju;Jang, Hong-Gi
    • Journal of Bio-Environment Control
    • /
    • v.8 no.3
    • /
    • pp.192-201
    • /
    • 1999
  • This study was aimed to introduce the measurement of $CO_2$ concentration and leaf area index in the phytotron for predicting the effect of CO.E, light and leaf area index on the instantaneous photosynthetic rate of sweet pepper with the existing ASKAM model. Measurements were made in 2 semi-closed phytotron compartments in which three different $CO_2$ concentrations were applied at random. Plants were grown on containers with circulating nutrient solution at 21$^{\circ}C$ and 80-95% relative humidity. The model estimates crop net $CO_2$ uptake for short time intervals during the day based on short-term data of daily radiation, temperature and $CO_2$ concentration. During the photosynthesis measurements, $CO_2$ concentrations in both compartments and in the basement were measured every minute. This was also done for the flow of pure $CO_2$ into the compartment, global radiation, photosynthetic active radiation inside the compartment, temperature and relative humidity. Crop growth models summarize our knowledge on crop behavior and have as such a wide range of applications in analysis, crop management and thus as a farm management tool.

  • PDF

Growth Characteristics by Shading Rates in Panax ginseng C. A. Meyer (해가림 투광 정도에 다른 인삼의 생육 특성)

  • 이성식
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.3
    • /
    • pp.292-298
    • /
    • 1997
  • To compare the growth pattern of ginseng plant under between conventional shading(light transmittance rate 3%) and polyethylene net shading(light transmittance rate 10%), the distribution of leaf area, specific leaf weight (S. L. W), leaf and stem dry weight and changes in light intensity were investigated in 2, 4 and 6 year old ginseng plant populations. Light transmittance rate(L.T.R.) was 3% at front line, 2% at middle line and 1.5% at rear line under conventional shading but it was 12, 10 and 8% under polyethylene net(P.E) shading, respectively. In 2 year old population, there was a little difference in the growth characteristics investigated between conventional and P.E. shading. In 4 year old field, the leaf area, stem and leaf dry weight decreased in large amount in the order of middle, and rear line on ridge under conventional shading, but with a little difference under P.E. shading. And these trends enlarged in 6 year old field with appearance of a large part of shoot over furrow from ridge planted ginseng. Root yield index was much lowered at the rear 3rd, 4th and 5th line of the conventional shading bed, but there was no yield difference among lines except 5th lines under the P.E. shading with higher yield by 28% than conventional shading.

  • PDF