• Title/Summary/Keyword: LEACH

Search Result 424, Processing Time 0.022 seconds

Wireless sensor network analysis of suitable types for fixed facility surveillance (고정설비감시를 위한 무선센서네트워크 형태 분석)

  • Lee, Hoo-Rock;Rhyu, Keel-Soo;Chung, Kyung-Yul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.50-54
    • /
    • 2016
  • A Wireless Sensor Network (WSN) is better than a conventional network for use in construction and Operations and Maintenance (O&M) because of its lower surveillance system cost. However, effective operation of a WSN is often difficult to obtain because the surveillance targets are usually fixed inside the building or underground. Therefore, this environmental constraint should be considered in the design of the WSN plant equipment surveillance system prior to installation. This study employs simulations of WSN-based fixed facility surveillance using the TinyOS TOSSIM simulator to investigate ideal types and setups of the WSN. Simulation target protocols included LEACH and flooding and gossiping protocols. The results show that the hierarchically-structured LEACH protocol demonstrated better load-balancing and efficiency than the flatly-structured flooding and gossiping protocol.

An Energy Efficient Cluster Formation Algorithm for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 클러스터 구성 알고리즘)

  • Han, Uk-Pyo;Lee, Hee-Choon;Chung, Young-Jun
    • The KIPS Transactions:PartC
    • /
    • v.14C no.2
    • /
    • pp.185-190
    • /
    • 2007
  • The efficient node energy utilization is one of important performance factors in wireless sensor networks because sensor nodes operate with limited battery power. To extend the lifetime of the wireless sensor networks, maintaining balanced power consumption between sensor nodes is more important than reducing each energy consumption of the sensor node in the network. In this paper, we proposed a cluster formation algorithm to extend the lifetime of the networks and to maintain a balanced energy consumption of nodes. To obtain it, we add a tiny slot in a round frame, which enables to exchange the residual energy messages between the base station (BS). cluster heads, and nodes. The performance of the proposed protocol has been examined and evaluated with the NS 2 simulator. As a result of simulation, we have confirmed that our proposed algorithm show the better performance in terms of lifetime than LEACH. Consequently, our proposed protocol can effectively extend the network lifetime without other critical overhead and performance degradation.

An Energy Efficient Cluster-Based Local Multi-hop Routing Protocol for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 클러스터 기반 지역 멀티홉 라우팅 프로토콜)

  • Kim, Kyung-Tae;Youn, Hee-Yong
    • The KIPS Transactions:PartC
    • /
    • v.16C no.4
    • /
    • pp.495-504
    • /
    • 2009
  • Wireless sensor networks (WSN) consisting of a largenumber of sensors aims to gather data in a variety of environments and is beingused and applied in many different fields. The sensor nodes composing a sensornetwork operate on battery of limited power and as a result, high energyefficiency and long network lifetime are major goals of research in the WSN. Inthis paper we propose a novel cluster-based local multi-hop routing protocolthat enhances the overall energy efficiency and guarantees reliability in thesystem. The proposed protocol minimizes energy consumption for datatransmission among sensor nodes by forming a multi-hop in the cluster.Moreover, through local cluster head rotation scheme, it efficiently manageswaste of energy caused by frequent formation of clusters which was an issue inthe existing methods. Simulation results show that our scheme enhances energyefficiency and ensure longer network time in the sensor network as comparedwith existing schemes such as LEACH, LEACH-C and PEACH.

Efficient Clustering Algorithm based on Data Entropy for Changing Environment (상황변화에 따른 엔트로피 기반의 클러스터 구성 알고리즘)

  • Choi, Yun-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3675-3681
    • /
    • 2009
  • One of the most important factors in the lifetime of WSN(Wireless Sensor Network) is the limited resources and static control problem of the sensor nodes. In order to achieve energy efficiency and network utilities, sensor nodes can be well organized into one cluster and selected head node and normal node by dynamic conditions. Various clustering algorithms have been proposed as an efficient way to organize method based on LEACH algorithm. In this paper, we propose an efficient clustering algorithm using information entropy theory based on LEACH algorithm, which is able to recognize environmental differences according to changes from data of sensor nodes. To measure and analyze the changes of clusters, we simply compute the entropy of sensor data and applied it to probability based clustering algorithm. In experiments, we simulate the proposed method and LEACH algorithm. We have shown that our data balanced and energy efficient scheme, has high energy efficiency and network lifetime in two conditions.

Design and Implementation of Cluster based Routing Protocol using Representative Path in Ubiquitous Sensor Network (무선 센서네트워크에서 대표경로를 이용한 클러스터기반 라우팅 프로토콜의 설계 및 구현)

  • Jang, You-Jin;Kim, Ah-Reum;Chang, Jae-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.91-105
    • /
    • 2010
  • A wireless sensor network communication technique has been broadly studied with continuous advances in ubiquitous computing environment. Especially, because the resource of the sensor node is limited, it is important to reduce the communication energy by using an energy-efficient routing protocol. The existing cluster-based routing protocols have a problem that they cannot select a cluster head efficiently by randomly choosing a head. In addition, because the existing cluster-based routing protocols do not support the large scale of network, they cannot be used for various applications. To solve the above problems, we, in this paper, propose a new cluster-based routing protocol using representative paths. The proposed protocol constructs an efficient cluster with distributed cluster heads by creating representative paths based on hop count. In addition, a new routing protocol supports multi-hop routing for data communication between a cluster member node and a cluster head as well as between cluster heads. Finally, we show that our protocol outperforms LEACH and Multihop-LEACH in terms of reliability and scalability.

An Energy Efficient Cluster-based Scheduling Scheme for Environment Information Systems (환경정보 시스템에 적합한 클러스터 기반 에너지 효율적인 스케줄링 기법)

  • An, Sung-Hyun;Kim, Seung-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.5
    • /
    • pp.633-640
    • /
    • 2008
  • Sensor node clustering is one of the most popular research topics to reduce the energy of sensor nodes in wireless sensor networks. Previous researches, however, did not consider prediction effects of sensed environment information on TDMA scheduling of a cluster, resulting energy inefficiency. In this paper, we suggest an energy efficient cluster-based scheduling scheme that can be applied flexibly to many environment information systems. This scheme reflects the environment information obtained at the application layer to the MAC layer to set up the schedule of a cluster. The application layer information sets up the scheduling referring to the similarity of sensed data of cluster head. It determines the data transmission considering the result of similarity. We show that our scheme is more efficient than LEACH and LEACH-C in energy, which are popular clustering schemes, through simulation.

  • PDF

Energy Modeling For the Cluster-based Sensor Networks (클러스터 기반 센서 네트워크의 에너지 모델링 기법)

  • Choi, Jin-Chul;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.14-22
    • /
    • 2007
  • Wireless sensor networks are composed of numerous sensor nodes and exchange or recharging of the battery is impossible after deployment. Thus, sonsor nodes must be very energy-efficient. As neighboring sensor nodes generally have the data of similar information, duplicate transmission of similar information is usual. To prevent energy wastes by duplicate transmissions, it is advantageous to organize sensors into clusters. The performance of clustering scheme is influenced by the cluster-head election method and the size or the number of clusters. Thus, we should optimize these factors to maximize the energy efficiency of the clustering scheme. In this paper, we propose a new energy consumption model for LEACH which is a well-known clustering protocol and determine the optimal number of clusters based on our model. Our model has accuracy over 80% compared with the simulation and is considerably superior to the existing model of LEACH.

Clustering Algorithm for Extending Lifetime of Wireless Sensor Networks (무선 센서 네트워크의 수명연장을 위한 클러스터링 알고리즘)

  • Kim, Sun-Chol;Choi, Seung-Kwon;Cho, Yong-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.77-85
    • /
    • 2015
  • Recently, wireless sensor network(WSN) have been used in various fields to implement ubiquitous computing environment. WSN uses small, low cost and low power sensors in order to collect information from the sensor field. This paper proposes a clustering algorithm for energy efficiency of sensor nodes. The proposed algorithm is based on conventional LEACH, the representative clustering protocol for WSN and it prolongs network and nodes life time using sleep technique and changable transmission mode. The nodes of the proposed algorithm first calculate their clustering participation value based on the distance to the neighbor nodes. The nodes located in high density area will have clustering participation value and it can turn to sleep mode. Besides, proposed algorithm can change transmission method from conventional single-hop transmission to multi-hop transmission according to the energy level of cluster head. Simulation results show that the proposed clustering algorithm outperforms conventional LEACH, especially non-uniformly deployed network.

A Routing Protocol for Assuring Scalability and Energy Efficiency of Wireless Sensor Network (WSN의 확장성과 에너지 효율성을 보장하는 라우팅 프로토콜)

  • Jeong, Yoon-Su;Kim, Yong-Tae;Park, Gil-Cheol;Lee, Sang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.4
    • /
    • pp.105-113
    • /
    • 2008
  • While the wireless sensor network has a strong point which does not have effect on whole activities of network even though neighboring sensor nods fail activities of some sensor nod or make some functions disappear by the characteristic of similar information detection, it has problems which is slowing down of wireless medium, transfer character with severe error, limited power supply, the impossibility of change by optional arrangement of sensor nods etc. This paper proposes PRML techniques which performs the fittest course searching process to reduce power consumption of entire nods while guarantees the scalability of network organizing sensor nods hierarchically. The proposed technique can scatter the load of cluster head by considering the connectivity with surplus energy of nod and reduce the frequency of communication among the nods. As a result of the analysis in comparison with LEACH-C and HEED technique, PRML technique get efficiency of average 6.4% in energy consuming respect of cluster head, efficiency of average 8% in entire energy consuming respect, and more efficiency of average 7.5% in other energy consuming distribution of network scalability than LEACH-C and HEED technique.

  • PDF

Leaching Characteristics of Foundry Sands When Used as Reactive Media in Permeable Reactive Barriers (반응벽체에 쓰인 주물사의 용출특성에 관한 연구)

  • ;Benson, Craig H
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.179-193
    • /
    • 2002
  • Waste foundry sands were tested to determine their leaching characteristics when used as reactive media in permeable reactive barriers (PRBs). Water leach tests and column leach tests were performed on twelve foundry sands and three reference materials such as Peerless iron, a local fill material, and torpedo sand. The latter three materials were tested to compare concentrations of heavy metals and anions found in other materials commonly placed below the groundwater table with those from the foundry sands. Results of water leach tests md total elemental analyses showed that all of the laundry sands are Category 2 materials per Section NR 538 of the Wisconsin Administrator Code. However, tests on Peerless iron, torpedo sand, and a typical fill material indicate that these materials, which are commonly placed below the groundwater table, also are Category 2 materials. Thus, using foundry sand as a PR3 medium should pose no greater risk than that imposed using conventional construction materials.