• Title/Summary/Keyword: LDV measurement

Search Result 103, Processing Time 0.028 seconds

Towed Underwater LDV Measurement of the Interaction of a Wire-Type Stimulator and the Boundary Layer on a Flat Plate (예인수조 LDV를 이용한 평판 경계층과 와이어 타입 난류촉진장치의 상호작용에 관한 연구)

  • Park, Jongyeol;Seo, Jeonghwa;Rhee, Shin Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.243-252
    • /
    • 2021
  • The present study aims to investigate the interaction of a wire-type turbulence stimulator and the laminar boundary layer on a flat plate by flow field measurement. For the towing tank tests, a one-dimensional Laser Doppler Velocimetry (LDV) attached on a two-axis traverse was used to measure the streamwise velocity component of the boundary layer flow in zero pressure gradient, disturbed by a turbulence stimulator. The wire diameter was 0.5 and 1.0 mm according to the recommended procedures and guidelines suggested by the International Towing Tank Conference. Turbulence development by the stimulator was identified by the skin friction coefficient, mean and Root Mean Square (RMS) of the streamwise velocity. The laminar boundary layer with the absence of the wire-type stimulator was similar to the Blasius solution and previous experimental results. By the stimulator, the mean and RMS of the streamwise velocity were increased near the wall, showing typical features of the fully developed turbulent boundary layer. The critical Reynolds number was reduced from 2.7×105 to 1.0×105 by the disturbances caused by the wire. As the wire diameter and the roughness Reynolds number (Rek) increased, the disturbances by the stimulator increased RMS of the streamwise velocity than turbulent boundary layer.

A Study on Unsteady Flow measurement using Laser Doppler Velocimeter in Curved Duct (곡관에서 laser유속계를 이용한 비정상유동 계측에 대한 연구)

  • 조병기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.81-89
    • /
    • 1996
  • In the present study, the unsteady in a square-selctional 180.deg. curved duct are experimentally investigated. The experimental study using air in a square-sectional 180.deg. curved duct is carried out to measure axial velocity distributions with data acquisition and processing system. In this system, Rotating Machinery Resolver(RMR) and PHASE Software are used to obtain the results of unsteady flows. In conclusion, the exact measurement of unsteady flow using LDV system depends upon uniformity of metreials, duct thickness, and scattered particles.

  • PDF

A study on the measurement and characterization of tubulent flow inside an engine cylinder (엔진 실린더내 난류유동 측정과 정량화방법에 관한 연구)

  • 강건용;엄종호;김용선
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.39-47
    • /
    • 1992
  • The engine combustion is one of the most important process affecting performance and emissions. One effective way to improve the engine combustion is to control motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence in a gasoline engine. This paper describes the measurement and characterization of mean velocity and turbulence intensity inside the cylinder of a 4-valve gasoline engine using laser Doppler velocimeter(LDV) under motoring(non-firing) conditions. Since the measured LDV data in each cycle show small cycle variation during compression stroke in the tested engine, the mean velocity and turbulence intensity are calculated by ensemble averaging method neglecting cycle variation effects. In the ensemble averaging method, the effects of the calculation window, in which velocities are assumed as the same crank angle, on mean velocity and turbulence intensity are fully investigated. In addition, the effects of measuring point on the flow characteristics are studied. With large calculation window, the mean velocity is shown to be less sensitive with respect to crank angle and turbulence intensity decrease in its absolute amplitude. When the piston approch to the top dead center of compression, the turbulence intensity is found to be homogeneous in the cylinder.

  • PDF

Effects of Stroke Change on Turbulent Kinetic Energy for the In-Cylinder Flow of a Four-Valve SI Engine (Stroke 변화가 Four-Valve SI 기관 실린더내 난류 운동에너지에 미치는 영향)

  • Yoo, S.C.
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.16-21
    • /
    • 2011
  • The effects of stroke change on turbulent kinetic energy for the in-cylinder flow of a four-valve SI engine were studied. For this study, the same intake manifold, head, cylinder, and the piston were used to examine turbulence characteristics in two different strokes. In-cylinder flow measurements were conducted using three dimensional LDV system. The measurement method, which simultaneously collects 3-D velocity data, allowed a evaluation of turbulent kinetic energy inside a cylinder. High levels of turbulent kinetic energy were found in regions of high shear flow, attributed to the collisions of intake flows. These specific results support the more general conclusion that the inlet conditions play the dominant role in the generation of the turbulence fields during the intake stroke. However, in the absence of two counter rotating vortices, this intake generated turbulent kinetic energy continues to decrease but at a much faster rate.

VELOCITY AND ITS DIRECTION MEASUREMENT OF SCATTERER WITH DIFFERENT VELOCITIES USING SELF-MOXING SEMICONDUCTOR LDV

  • Shinohara, Shigenobu;Haneda, Yoshiyuki;Suzuki, Takashi;Ikeda, Hiroaki;Yoshida, Hirofumi;Sawaki, Toshiko;Mito, Keiichiro;Sumi, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1966-1970
    • /
    • 1991
  • The self-mixing type semiconductor laser Doppler velocimeter(SM-LDV) is applied to measure two simultaneously moving targets with different velocities in the same direction as a prototype target for multiscatterers. The measured beat waveform is found to be a composite wave of each beat waveform measured fran each of only moving target. In the composite waveform, each one-cycle wave has a feature of the sawtooth wave. This fact shows a possibility to discriminate the flow direction of fluid containing multiscatterers with distributed velocities by cooperating an improved version of the direction discrimination circuit already devised by the authors.

  • PDF

Turbulence Enhancement by Ultrasonically Induced Gaseous Cavitation in the $CO_2$Saturated Water

  • Lee, Seung-Youp;Park, Young-Don
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.246-254
    • /
    • 2002
  • Recent primary concern for the design of high performance heat exchanger and highly integrated electronic equipments is to develop an active and creative technologies which enhance the heat transfer without obstructing the coolant flows. In this study, we found through the LDV measurement that the gaseous cavitation induced by ultrasonic vibration applied to the CO$_2$saturated water in the square cross-sectioned straight duct flow enhances the turbulence much more than the case of non-ultrasonic or normal ultrasonic conditions without gaseous cavitation does. We also found that gaseous cavitation can enhance effectively the turbulent heat transfer between the heating surfaces and coolants by destructing the viscous sublayer.

Measurements of a Round Jet with High-Definition 3D-PTV

  • Hwang, Tae-Gyu;Doh, Deog-Hee;Saga Tetsuo;Kenneth D. Kihm
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1211-1224
    • /
    • 2004
  • Two round jets. impinged and pulsed. were measured with high-resolution 3D-PTV technique. The measurement system consists of three CCD cameras, Ar-ion laser, an image grabber and a host computer. Two fitness functions were introduced in a genetic algorithm in order to enhance the correspondences of the particles. One was based on a concept of the continuum theory and the other one was based on a minimum distance error. The velocity profiles of the impinged jet obtained by the constructed 3D-PTV system were compared with those of LDV measurements made in this study. The head vortex of the jet was visualized by LIF and was reconstructed by the constructed high-resolution 3D-PTV system for comparisons.

The development of Laser Vibrometer for the measurement of vibration of electric machinery (전기기기의 진동측정을 위한 레이저 진동계의 개발)

  • Kim, Seong-Hoon;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1867-1870
    • /
    • 1997
  • A Laser Doppler Vibrometer (LDV) based on the heterodyne method was developed using He-Ne laser as a light source. The heterodyne method was employed to eliminate the ambiguity in the direction of the motion. The frequency shifted object beam (40 MHz) by a Bragg cell was focused on the surface of the moving target and the Doppler shifted reflected beam was combined at the fast photodetector to produce frequency modulated signal centered at 40 MHz. The signal from the detector was amplified, filtered and downconverted to intermediate frequency centered at 5 MHz. The voltage output that was proportional to the velocity of the moving surface was obtained using PLL. This LDV can be used to measure the resonant frequency of the electric equipments such as circuit breakers and bushings, of which resonant frequencies are changed when they are damaged.

  • PDF

Turbulence Generation by Ultrasonically Induced Gaseous Cavitation in the $CO_2$Saturated Water Flow

  • Lee, Seung-Youp;Park, Young-Don
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1203-1210
    • /
    • 2003
  • Emission of ultrasonic vibration to turbulent flow promotes the turbulence generation due to the resonantly oscillating pressure field and thereby induced cavitation. In addition, ultrasonic vibration is well transmitted through water and not dissipated easily so that the micro-bubbles involved in the fluid induce the gaseous cavitation if the bubbles are resonated with the ultrasonic field. In the present study, we found through LDV measurement that the gaseous cavitation induced by ultrasonic vibration to CO$_2$saturated water flow in the rectangular cross-sectioned straight duct enhances turbulence much more than the case of non-ultrasonic or normal ultrasonic conditions without gaseous cavitation. We also found that the fluctuating velocity component induced by emitting the ultrasonic vibration in normal direction of a rectangular channel flow can be redistributed to stream-wise component by the agitation of gaseous cavitation.

Turbulence Enhancement Characteristics Analysis of Inclined-Tumbles for Various SCV Configurations (SCV형상별 경사텀블유동의 난류증가 특성 해석)

  • Lee, J.W.;Kang, K.Y.;Choi, S.H.;Park, S.C
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.234-242
    • /
    • 1998
  • It has been demonstrated that the in-cylinder turbulence is enhanced by inclined swirl with a SCV(swirl control valve). The inclined-tumble flow measurement and analysis were performed for various types of intake systems that generated several different combinations of swirl ratio and tumble ratio in the cylinder. Experiments were conducted in a 4-valve optically accessed transparent research engine using a backward-scatter LDV mode under motoring condition at 1,000rpm. The influence of swirl/tumble levels on the characteristics of turbulence was analysed. This study presents experimental results of the inclined-tumble flow structure, including the flow motion phenomena, angular momentum and turbulence intensity.

  • PDF