• Title/Summary/Keyword: LDPE/EVA blend

Search Result 8, Processing Time 0.025 seconds

Flame Retardancy and Electrical Characteristics of LDPE/EVA Blend Involving Mg(OH)2 and Zinc-borate

  • Ryu, Boo-Hyung;Kim, Gyu-Baek;Jung, Sang-Ho;Cho, Young-Suk
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.309-312
    • /
    • 2006
  • This study shows to blend ethylene vinyl acetate(EVA) and a flame retardant agent, $Mg(OH)_{2}$, and synergists, zinc borate for improving flame retardancy of low density polyethylene(LDPE). And it studied the property of flame retardancy of LDPE/EVA blend by the amount of addition through LOI and TGA, estimated the electrical characteristics such as volume resistivity and breakdown strength. The flame retardancy of LDPE/EVA blend was much improved in case of adding zinc borate with 6phr degree, and the electrical characteristics were more or less decreased depending on increasing the amount of addition. Zinc borate used for improving the flame retardancy of LDPE/EVA blend let the added amount of a flame retardant agent, $Mg(OH)_{2}$ limited, and the electrical characteristics decreased extremely by adding a good deal of $Mg(OH)_{2}$.

Electrical and Mechanical Properties of Gamma-ray Irradiated LDPE/EVA Blends (${\gamma}$-선 조사에 따른 LDPE/EVA 블랜드의 전기적, 기계적 특성)

  • Lee, Chung;Kim, Ki-Yup;Kim, Gyu-Baek;Jung, Sang-Ho;Ryu, Boo-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.55-59
    • /
    • 2006
  • The radiation effects on electrical and mechanical properties of LDPE/EVA blends with various vinyl acetate contents were investigated. Radiation degradation of LDPE/EVA blends were studied by using gelation, volume resistivity, permittivity, dissipation factor, elongation at break, and E-modulus. As vinyl acetate contents increased in LDPE/EVA blends, electrical insulation characteristics were deteriorated, but flexibility was improved. As irradiation doses increased, electrical insulation characteristics were improved, but flexibility was deteriorated.

Preparation and Characterization of Antimicrobial Composite Film Containing Calcined Oyster Shell Powder (굴 패각 분말을 함유한 항균성 복합 필름의 제조 및 특성 연구)

  • Park, Kitae;Kambiz, Sadeghi;Seo, Jongchul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.1
    • /
    • pp.41-48
    • /
    • 2021
  • In this study, ethylene vinyl acetate (EVA) and low density polyethylene (LDPE) composite films (EVA/LDPE-OSP) containing calcined oyster shell powder (OSP) were prepared using twin-screw extruder as an antimicrobial packaging material. The OSP composite was initially prepared and then incorporated into an EVA/LDPE blend at different ratios (0, 1, 3 and 5%) to develop the EVA/LDPE-OSP composite films. The as-prepared EVA/LDPE-OSP composites films were evaluated using FT-IR, DSC, TGA, OTR, WVTR, SEM and UTM as well as antimicrobial activity was examined using JIS Z 2801:2000 standard. OPS endowed the antimicrobial potency to the composite films against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. In addition, the incorporation of OSP remarkably enhanced the thermal stability. OSP as a natural biocidal agent can be used as a multifunctional additive in packaging industry such as improving the thermomechanical properties and preventing the microbial contamination of packaged products.

Flame Retardancy and Electrical/Mechanical Properties of LDPF/EVA Blend (LDPE/EVA Blend의 난연성 및 전기/기계적 특성)

  • Ryu, Boo-Hyung;Lee, Chung;Kim, Ki-Yup
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.99-104
    • /
    • 2008
  • In this research, magnesium hydroxide as a flame retardant agents and zinc borate as a synergist were mixed with LDPF/EVA blended samples, in order to improve their flame retardancy. We attempted to select the best mixing ratio of the LDPF/EVA blend and the optimum amount of magnesium hydroxide and zinc borate by the comparison and analysis of the flame retardancy, the electrical properties such as the volume resistivity and dielectric loss tangent, and the mechanical properties such as the tensile strength and elongation at break. Particularly, specimen which is the 6phr of zinc borate and 10phr of magnesium hydroxide 70/30phr adding to the LDPF/EVA blended samples has been most excellent in flame retardancy and electrical/mechanical properties.

Effect of Red Mud Addition to Polyolefin (폴리올레핀에 대한 적니의 첨가효과)

  • Lee, Keun Young;Kim, Jeong Ho
    • Clean Technology
    • /
    • v.6 no.2
    • /
    • pp.93-99
    • /
    • 2000
  • Effect of amount of red mud and processing method on the tensile and impact properties of polymers were investigated when the red mud was added as a filler to polypropylene (PP), low density polyethylene (LDPE) and PP/LDPE blend. Especially in case of PP, increase in the tensile strength, elongation at break and absorbed energy was observed when extrusion was carried out more than two times. Tensile strength showed a very remarkable increase when master batch was used in comparison with simple multiple extrusion. In case of LDPE, 10% addition of red mud resulted in the increase of tensile modulus and impact strength, while 20% addition caused a decrease in the same properties. Addition of 5% EVA could reverse this trend. Addition of 20% red mud to PP/LDPE blend gave a decrease in impact strength but 5% EPR compatibilizer could improve the impact properties. Above results showed that the processing method is a very important factor in the utilization of red mud as a plastic fillers and master batch is one of the very effective way of red mud addition.

  • PDF

A Study on the Recycling of Agricultural Films by Air Washing (공기세척에 의한 농업용 폐필름의 재활용 연구)

  • Kim, R. K.;Kang, M.;Lee, J. M.;Yoon, T. H.
    • Resources Recycling
    • /
    • v.8 no.3
    • /
    • pp.3-8
    • /
    • 1999
  • An air-washer was developed in order to remove the soil on the films collected from agricultural use, The washed films were subjected to TGA analysis to measure the residual soil content and DSC analysis to evaluate composition as well as compositional ratro, Mechanical properties of washed films were measured via tensile test ,md the properties of washed films were compared with those of neat resin blend. Major component of air washed films was polyethylene, and compositional ratio was 10:6:3:1 (HDPE:LLDPE:LDPE:EVA). 30 min air-washed films showed 2.1 % of residual soil content, while the water washed films had 1.5%. Tensile properties of washed (air and water) films were almost same as those of neat resin mixture.

  • PDF

Insect Repellency and Crop Productivity of Essential Oil Films

  • KIM, Jin Gu;KANG, Seok Gyu;MOSTAFIZ, Md Munir;LEE, Jeong Min;LEE, Kyeong-Yeoll;HWANG, Tae Kyung;LIM, Jin Taeg;KIM, Soo Yeon;LEE, Won Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.95-106
    • /
    • 2020
  • The purpose of this study was to determine the effects of coniferous essential oils (EOs) blended films on insect repellence and crop productivity. Low-density polyethylene (LDPE) film is widely used, especially in agriculture and for food packaging. Ethylene vinyl acetate was blended with LDPE to reduce volatilization of EOs. An EO from Japanese cypress (Chamaecyparis obtusa) was incorporated into the blend film to conduct field research on antimicrobial and insect repellent properties. Among the various concentrations of EO, the highest concentration (2.5%) showed the highest efficiency in terms of pesticidal activity. The ability to inhibit microbial growth can be explained by the lipophilic properties of the EO component, and many studies have already demonstrated this. Agricultural films containing all types of EO have been tested on various crops such as chili, cucumber, Korean melon and have been able to verify their effectiveness in avoiding pests and increasing yields. From these results, it was found that it is reasonable to use a modified film such as a composite film containing an EO for agriculture. Thus, the modified film containing EO has undoubtedly shown impressive potential for reducing the use of pesticides in a variety of ways, not only for agricultural mulching film but also for food and agricultural product packaging. This product is an environmentally friendly chemical and is safe for agricultural and industrial and food packaging applications, among others. In particular, the use of agricultural films significantly reduces the use of pesticides, suggesting that farmers can increase their incomes by reducing working hours and costs, and increasing production.