• Title/Summary/Keyword: LDI-mass spectrometry

Search Result 7, Processing Time 0.02 seconds

Gold Nanostructure-Based Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for Analysis of Small Biomolecules

  • Hye-Sun Cho;Tae Hoon Seo;Ji Hun Park;Young-Kwan Kim
    • Mass Spectrometry Letters
    • /
    • v.15 no.1
    • /
    • pp.26-39
    • /
    • 2024
  • Gold nanostructures (Au NSs) are useful and interesting matrices for mass spectrometric analysis of various biomolecules based on organic matrix-free laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF-MS). Au NSs provide high efficiency and versatility in LDI-TOF-MS analysis based on their well-established synthesis and surface functionalization, large surface area, high laser absorption capacity, and photothermal conversion efficiency. Therefore, Au NSs based LDI-TOF-MS can be a facile, functional, and efficient analytical method for important small biomolecules owing to its simple preparation, rapid analysis, salt-tolerance, signal reproducibility, and quantitative analysis. This review chronologically summarizes the important advance of Au NSs-based LDI-TOF-MS platforms in terms of in-depth mechanism, signal enhancement, quantitative analysis, and disease diagnosis.

Rapid Surface Heating Promotes Laser Desorption Ionization of Thermally Labile Molecules from Surfaces

  • Han, Sang Yun
    • Mass Spectrometry Letters
    • /
    • v.7 no.4
    • /
    • pp.91-95
    • /
    • 2016
  • In recent years, matrix-free laser desorption ionization (LDI) for mass spectrometry of thermally labile molecules has been an important research subject in the pursuit of new ionization methods to serve as alternatives to the conventional matrix-assisted laser desorption ionization (MALDI) method. While many recent studies have reported successful LDI of thermally labile molecules from various surfaces, mostly from surfaces with nanostructures, understanding of what drives the LDI process still requires further study. This article briefly reviews the thermal aspects involved in the LDI mechanism, which can be characterized as rapid surface heating. The thermal mechanism was supported by observed LDI and postsource decay (PSD) of peptide ions produced from flat surfaces with special thermal properties including amorphous Si (a-Si) and tungsten silicide ($WSi_x$). In addition, the concept of rapid surface heating further suggests a practical strategy for the preparation of LDI sample plates, which allows us to choose various surface materials including crystalline Si (c-Si) and Au tailorable to specific applications.

Application of multimodal surfaces using amorphous silicon (a-Si) thin film for secondary ion mass spectrometry (SIMS) and laser desorption/ionization mass spectrometry (LDI-MS)

  • Kim, Shin Hye;Lee, Tae Geol;Yoon, Sohee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.384.1-384.1
    • /
    • 2016
  • We reported that amorphous silicon (a-Si) thin film provide sample plate exhibiting a multimodality to measure biomolecules by secondary ion mass spectrometry (SIMS) and laser desorption/ionization mass spectrometry (LDI-MS). Kim et al.1 reported that a-Si thin film were suitable to detect small molecules such as drugs and peptides by SIMS and LDI-MS. Recently, bacterial identification has been required in many fields such as food analysis, veterinary science, ecology, agriculture, and so on.2 Mass spectrometry is emerging for identifying and profiling microbiology samples from its advantageous characters of label-free and shot-time analysis. Five species of bacteria - S. aureus, G. glutamicum, B. kurstaki, B. sphaericus, and B. licheniformis - were sampled for MS analysis without lipid extraction in sample preparation steps. The samples were loaded onto the a-Si thin film with a thickness of 100 nm which did not only considered laser-beam penetration but also surface homogeneity. Mass spectra were recorded in both positive and negative ionization modes for more analytical information. High reproducibility and sensitivity of mass spectra were demonstrated in a mass range up to mass-to-charge ratio(m/z) 1200 by applying the a-Si thin film in mentioned above MS. Principle component analysis (PCA) - a popular statistical analysis widely used in data processing was employed to differentiate between five bacterial species. The PCA results verified that each bacterial species were readily distinguished and differentiated effectively from our MS approach. It shows a new opportunity to rapid bacterial profiling and identification in clinical microbiology. More details will be discussed in the presentation.

  • PDF

Observation of Peptide-Ion Generation by Laser-Induced Surface Heating from Tungsten Silicide Surfaces

  • Kim, Shin-Hye;Park, Sun-Hwa;Song, Jae-Yong;Han, Sang-Yun
    • Mass Spectrometry Letters
    • /
    • v.3 no.1
    • /
    • pp.18-20
    • /
    • 2012
  • We report observation of laser desorption/ionization (LDI) of peptides from flat surfaces of tungsten silicide ($WSi_2$). In contrast to MALDI (matrix-assisted laser desorption/ionization) and SALDI (surface-assisted laser desorption/ionization) mass spectrometry, this study did not utilize any matrices and surface nanostructures. In this work, LDI on $WSi_2$ surfaces is demonstrated to cover a mass range up to 1,600 Da (somatostatin; monoisotopic mass = 1637.9 Da). In addition, it exhibited a high sensitivity, which could detect peptides, which could detect peptides of low femtomole levels (20 fmol for angiotensin II). The observed LDI process was discussed to be largely thermal, more specifically, due to laser-induced surface heating that is most likely promoted by the low thermal diffusivity (${\kappa}$) of $WSi_2$ substrate.

Mass spectrometry based on nanomaterials (나노물질을 이용한 질량분석 기술 개발동향)

  • Park, Jong-Min;Noh, Joo-Yoon;Kim, Moon-Ju;Pyun, Jae-Chul
    • Ceramist
    • /
    • v.21 no.3
    • /
    • pp.249-269
    • /
    • 2018
  • In conventional MALDI-TOF mass spectrometry, analyte molecules are known to be ionized by mixing with organic matrix molecules. As the organic matrix molecules are made into small fragments, they generate unreproducible mass peaks such that MALDI-TOF mass spectrometry is nearly impossible in the low mass-to-charge (m/z) range (< 1000). Additionally, the dried sample mixed with matrix were made as inhomogeneous crystal on metal plate. When the laser radiation was made on the sample crystal, the amount of generated sample ion was observed to be quite different according to the radiation point. Therefore, the quantitative analysis was very difficult even for the sample spots at the same concentration for the conventional MALDI-TOF mass spectrometry. In this work, we present laser desorption/ionization (LDI) mass spectrometry based on solid-matrices for the quantitative analysis of small molecules in the low m/z range by using MALDI-TOF mass spectrometry: (1) Carbon based nanostructures; (2) Semiconductor based nanomaterials; (3) Metal based nanostructures.

Organic matrix-free imaging mass spectrometry

  • Kim, Eunjin;Kim, Jisu;Choi, Inseong;Lee, Jeongwook;Yeo, Woon-Seok
    • BMB Reports
    • /
    • v.53 no.7
    • /
    • pp.349-356
    • /
    • 2020
  • Mass spectrometry (MS) is an ideal tool for analyzing multiple types of (bio)molecular information simultaneously in complex biological systems. In addition, MS provides structural information on targets, and can easily discriminate between true analytes and background. Therefore, imaging mass spectrometry (IMS) enables not only visualization of tissues to give positional information on targets but also allows for molecular analysis of targets by affording the molecular weights. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS is particularly effective and is generally used for IMS. However, the requirement for an organic matrix raises several limitations that get in the way of accurate and reliable images and hampers imaging of small molecules such as drugs and their metabolites. To overcome these problems, various organic matrix-free LDI IMS systems have been developed, mostly utilizing nanostructured surfaces and inorganic nanoparticles as an alternative to the organic matrix. This minireview highlights and focuses on the progress in organic matrix-free LDI IMS and briefly discusses the use of other IMS techniques such as desorption electrospray ionization, laser ablation electrospray ionization, and secondary ion mass spectrometry.

Use of Graphite Plate for Homogeneous Sample Preparation in Matrix/Surface-assisted Laser Desorption and Ionization of Polypropyleneglycol and Polystyrene

  • Kim, Jeong Hwan;Gang, Wi Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.401-404
    • /
    • 2000
  • Matrix/Surface-assisted laser desorption/ionization (M/SALDI) mass spectrometry of polypropylene glycol and polystyrene, directly deposited on graphite plate, is demonstrated. Graphite plate is effective both as an en-ergy transfer medium and robu st sampling support for LDI of polymers. Mass spectra ofpolymers can be easily obtained due to homogeneous distribution on graphite surface and their ion signals are long-lived by large ef-fective desorption volume enough to investigate M/SALDI process.