Browse > Article
http://dx.doi.org/10.5478/MSL.2016.7.4.91

Rapid Surface Heating Promotes Laser Desorption Ionization of Thermally Labile Molecules from Surfaces  

Han, Sang Yun (Department of Nanochemistry, Gachon University)
Publication Information
Mass Spectrometry Letters / v.7, no.4, 2016 , pp. 91-95 More about this Journal
Abstract
In recent years, matrix-free laser desorption ionization (LDI) for mass spectrometry of thermally labile molecules has been an important research subject in the pursuit of new ionization methods to serve as alternatives to the conventional matrix-assisted laser desorption ionization (MALDI) method. While many recent studies have reported successful LDI of thermally labile molecules from various surfaces, mostly from surfaces with nanostructures, understanding of what drives the LDI process still requires further study. This article briefly reviews the thermal aspects involved in the LDI mechanism, which can be characterized as rapid surface heating. The thermal mechanism was supported by observed LDI and postsource decay (PSD) of peptide ions produced from flat surfaces with special thermal properties including amorphous Si (a-Si) and tungsten silicide ($WSi_x$). In addition, the concept of rapid surface heating further suggests a practical strategy for the preparation of LDI sample plates, which allows us to choose various surface materials including crystalline Si (c-Si) and Au tailorable to specific applications.
Keywords
Laser desorption ionization (LDI); Rapid surface heating; Thermal mechanism; Matrix-assisted laser desorption ionization (MALDI); Surface-assisted laser desorption ionization (SALDI);
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Fenn J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Science 1989, 246, 64.   DOI
2 Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Rapid Commun. Mass Spectrom. 1988, 2, 151.   DOI
3 Kim, J. Mass Spectrom. Lett. 2015, 6, 27.   DOI
4 Robb, D. B.; Covey, T. R.; Bruins, A. P. Anal. Chem. 2000, 72, 3653.   DOI
5 Bruins, A. P. Mass Spectrom. Rev. 1991, 10, 53.   DOI
6 Cody, R. B.; Laramee, J. A.; Durst, H. D. Anal. Chem. 2005, 77, 2297.   DOI
7 Takats, Z.; Wiseman, J. M.; Gologan B.; Cooks R. G. Science 2004, 306, 471.   DOI
8 McDonnell L. A.; Heeren R. M. Mass Spectrom. Rev. 2007, 26, 606.   DOI
9 Buriak, J. M.; Wei, J.; Siuzdak, G. Nature 1999, 399, 243.   DOI
10 Alimpiev, S.; Grechnikov, A.; Sunner, J.; Karavanskii, V.; Simanovsky, Ya.; Zhabin, S.; Nikiforov, S. J. Chem. Phy. 2008, 128, 014711.   DOI
11 Karas, M.; Kruger, R. Chem. Rev. 2003, 103, 427.   DOI
12 Northen, T. R.; Yanes, O.; Northen, M. T.; Marrinucci, D.; Uritboonthai, W.; Apon, J.; Golledge, S. L.; Nordstrom, A.; Siuzdak, G. Nature 2007, 449, 1033.   DOI
13 Go, E. P.; Apon, J. V.; Luo, G.; Saghatelian, A.; Daniels, R. H.; Sahi, V.; Dubrow, R.; Cravatt, B. F.; Vertes, A.; Siuzdak, G. Anal. Chem. 2005, 77, 1641.   DOI
14 Piret, G.; Drobecq, H.; Coffinier, Y.; Melnyk, O.; Boukherroub, R. Langmuir 2010, 26, 1354.   DOI
15 Walker, B. N.; Razunguzwa, T.; Powell, M.; Knochenmuss, R.; Vertes, A. Angew. Chem. Int. Edit. 2009, 48, 1669.   DOI
16 Walker, B. N.; Stolee, J. A.; Pickel, D. L.; Retterer, S. T.; Vertes, A. J. Phys. Chem. C 2010, 114, 4835.
17 Peterson, D. S. Mass Spectrom. Rev. 2007, 26, 19.   DOI
18 Shin, W. J.; Shin, J. H.; Song, J. Y.; Han, S. Y. J. Am. Soc. Mass Spectrom. 2010, 21, 989.   DOI
19 Alimpiev, S.; Nikiforov, S.; Karavanskii, V.; Minton, T.; Sunner, J. J. Chem. Phys. 2001, 115, 1891.   DOI
20 Luo, G.; Chen, Y.; Siuzdak, G.; Vertes, A. J. Phys. Chem. B 2005, 109, 24450.   DOI
21 Tanaka, K. Angew. Chem. Int. Edit. 2003, 42, 3860.   DOI
22 Daves Jr., G. D. Accounts Chem. Res. 1979, 12, 359.   DOI
23 Beuhler, R. J.; Flanigan, E.; Greene, L. J.; Friedman, L. J. Am. Chem. Soc. 1974, 96, 3990.   DOI
24 Han, S. Y. Bull. Kor. Chem. Soc. 2015, 36, 1951.   DOI
25 Kim, S. H.; Lee, A.; Song, J. Y.; Han, S. Y. J. Am. Soc. Mass Spectrom. 2012, 23, 935.   DOI
26 Burgess Jr., D.; Stair, P.C.; Weitz, E. J. Vac. Sci. Technol. A 1986, 4, 1362.   DOI
27 Collette, C.; Drahos, L.; Pauw, E. D.; Vekey, K. Rapid Commun. Mass Spectrom. 1998, 12, 1673.   DOI
28 Chen, Y.; Vertes, A. Anal. Chem. 2006, 78, 5835.   DOI
29 Luo, G.; Marginean, I.; Vertes, A. Anal. Chem. 2002, 74, 6185.   DOI
30 Stolee, J. A.; Chen, Y.; Vertes, A. J. Phys. Chem. C 2010, 114, 5574.   DOI
31 Kim. S. H.; Park, S. H.; Song, J. Y.; Han, S. Y. Mass Spectrom. Lett. 2012, 3, 18.   DOI
32 Kim, S. H.; Kim, J.; Moon, D. W.; Han, S. Y. J. Am. Soc. Mass Spectrom. 2013, 24, 167.   DOI
33 Kim, S. H.; Shom, H. K.; Lee, T. G.; Han, S. Y. Surf. Interface. Anal. 2014, 46, 35.   DOI