This study proposed a rapid microscopic examination method for pork freshness evaluation by using the self-assembled hyperspectral microscopic imaging (HMI) system with the help of feature extraction algorithm and pattern recognition methods. Pork samples were stored for different days ranging from 0 to 5 days and the freshness of samples was divided into three levels which were determined by total volatile basic nitrogen (TVB-N) content. Meanwhile, hyperspectral microscopic images of samples were acquired by HMI system and processed by the following steps for the further analysis. Firstly, characteristic hyperspectral microscopic images were extracted by using principal component analysis (PCA) and then texture features were selected based on the gray level co-occurrence matrix (GLCM). Next, features data were reduced dimensionality by fisher discriminant analysis (FDA) for further building classification model. Finally, compared with linear discriminant analysis (LDA) model and support vector machine (SVM) model, good back propagation artificial neural network (BP-ANN) model obtained the best freshness classification with a 100 % accuracy rating based on the extracted data. The results confirm that the fabricated HMI system combined with multivariate algorithms has ability to evaluate the fresh degree of pork accurately in the microscopic level, which plays an important role in animal food quality control.
본 논문은 EBGM(Elastic Bunch Graph Matching)기법을 이용한 얼굴인식에 대해 다룬다. 대용량 영상 정보에 대해 차원 축소를 이용한 얼굴인식 기법인 주성분기법이나 선형판별기법에서는 얼굴 영상 전체의 정보를 이용하는 반면 본 연구에서는 얼굴의 눈 코 입 등과 같은 얼굴 특징점에 대해 주파수와 방향각이 다른 여러 개의 가버 커널과 영상 이미지의 컨볼루션(Convolution)의 계수의 집합(Jets)을 이용한 특징 데이터를 이용한다. 하나의 얼굴 영상에 대해서 모든 영상이 같은 크기의 특질 데이터로 표현되는 Face Graph가 생성되며, 얼굴인식 과정에서는 추출된 제트의 집합에 대해서 상호 유사도(Similarity)의 크기를 비교하여 얼굴인식을 수행한다. 본 논문에서는 기존의 EBGM 방법의 Face Graph 생성 과정을 보다간략화 한 방법을 이용하여 얼굴인식 과정에서 계산량을 줄여 속도를 개선하였으며, 퍼지 매칭법을 이용한 유사도 계산을 하였다.
정보사회가 고도화됨에 따라 의견의 다양성과 복잡성이 증대되어 이들로 부터 중요한 이슈를 도출해내고 문제 상황을 정확하게 파악하여 대응하는 일이 더욱 어려워지고 있다. 이에 따라 교육계에서는 기존의 담론과 쟁점 이외에도 변화되는 사회에 발맞추어 새롭게 등장하는 이슈를 발굴하여 대응할 필요가 있다. 본 연구는 국민청원 게시판에 작성된 육아와 교육 카테고리의 글을 분석하여 교육계의 주된 이슈를 도출해 내고자 하였다. 텍스트 마이닝 방법 가운데 하나인 토픽모델링을 활용하여 분석한 결과, 현재 교육 분야의 주요 이슈를 교육 관련법, 대학입시, 교육 관련 범죄, 교육환경, 유·초등교육, 교원처우, 교육정책, 고등교육, 중등교육 등의 9개 주제로 구분할 수 있었고, 이들을 주제 간의 관계를 시각화하여 제시하였다. 본 연구는 국민들의 여론을 수집한 후 주제별로 구분하여 중요 이슈를 도출하였다는 점에서 의의를 가진다.
본 연구에서는 코로나19 관련 연구논문의 연구주제를 탐색하고 동향을 검토하고 있다. 또한 감성분석을 통해 부정적인 어조가 강한 경고가 되는 주제들을 알아본다. 잠재 디리슐레 할당(LDA)를 이용하여 총 8개의 토픽을 발견하였고, 이를 구조적 토픽 모델링(STM)과 비교하여 비교적 안정적인 결과임을 확인하였다. 또한 k-means 군집 알고리즘을 통해 각 토픽별로 세부 연구주제를 발견하였고 주성분 분석을 이용하여 이를 시각적으로 표현하였다. 감성분석을 통해 각 토픽별 긍정적, 부정적인 단어들을 살펴보고 감성점수를 계산하여 연구논문의 주된 어조를 파악하였는데, 특히 생물 의학 관련, 국제적 역학관계, 심리적 영향과 관련된 연구에서 부정적인 어조가 강한 것으로 나타나 해당 부문에 대해서 주의와 관심이 요구된다. 향후 연구자들이 연구의 방향성을 탐색하고 정책결정자들이 연구지원 사업을 결정하는데 기초자료로 활용될 수 있을 것이다.
깊이 값에 따른 얼굴의 형상은 사람의 특징을 나타내는 중요한 요소 중의 하나로서 각 사람마다 다른 모양을 가지고 있다. 다른 형상을 가진 얼굴 영상으로부터 분리한 주파수 성분은 동일 얼굴에 대한 또 다른 중요 특징 성분의 하나가 될 수 있다. 본 논문은 3차원 얼굴 영상에서 등고선 값을 따라 추출된 영역에 대하여 각 영역별로 주파수 분리를 이용하여 특징을 추출한다. 그리고 이 주파수에 대한 수정된 퍼지 군집화를 적용한 얼굴 인식 알고리즘을 제안한다. 먼저 객체와 배경을 분리하여 얼굴을 추출한 후 얼굴에서 가장 두드러진 형태인 코끝을 찾는다. 이를 이용하여 회전된 얼굴에 대해 정규화를 실시한다. 얼굴의 등고선 영역은 코끝을 기준으로 깊이 값에 따라 영역이 추출되며 이는 사람마다 서로 다른 형상 특징을 가진다. 등고선에 따라 획득된 3차원 얼굴 영상으로부터 이산 웨이블릿 변환을 이용하여 4가지의 주파수 성분을 추출하여 특징정보로 사용한다. 각각의 웨이블릿 주파수 성분을 추출한 등고선 영역에 대해 차원의 감소를 위하여 고유얼굴 추출과 특징 공간상에서 클래스간의 분리를 최대화시키기 위해 선형 판별 분석 알고리즘을 이용하여 유사도를 비교하였다. 본 논문에서는 클래스간의 분별 정보를 향상시키고자 각각의 등고선 영역과 각 영역의 주파수별로 수정된 퍼지 군집화 알고리즘을 적용하여 인식률을 향상 시켰으며, 코끝으로부터 깊이 값이 60인 영역의 경우 98.3%의 인식률을 나타내었다.
본 연구는 전통뉴스 보도에 나타난 인공지능(AI)스피커 뉴스 텍스트 분석을 통해 인공지능(AI) 스피커 발달과정을 분류하고 시기별 제품별 특성을 파악하였다. 또한 AI 스피커 사업자 제품별 뉴스 보도와 시기별 뉴스 보도간의 상관관계를 분석하였다. 분석에 사용된 이론적 배경은 뉴스의 프레임과 토픽프레임이다. 분석방법으로는 LDA 방식을 활용한 토픽모델링(Topic Modeling)과 의미연결망분석이 사용되었으며, 추가로 'UCINET'중 QAP분석을 적용하였다. 연구방법은 내용분석 방법으로 2014년부터 2019년까지 AI 스피커 관련 2,710건의 뉴스를 1차로 수집하였고, 2차적으로 Nodexl 알고리즘을 이용하여 토픽프레임을 분석하였다. 분석 결과 첫째, AI 스피커 사업자 유형별 토픽 프레임의 경향은 4개 사업자(통신사업자, 온라인 플랫폼, OS 사업자, IT디바이스 생산업자) 특성에 따라 다르게 나타났다. 구체적으로, 온라인 플랫폼 사업자(구글, 네이버, 아마존, 카카오)와 관련한 프레임은 AI 스피커를 '검색 또는 입력 디바이스'로 사용하는 프레임의 비중이 높았다. 반면 통신 사업자(SKT, KT)는 모회사의 주력 사업인 IPTV, 통신 사업의 '보조 디바이스' 관련한 프레임이 두드러지게 나타났다. 나아가 OS 사업자(MS, 애플)는 '제품의 의인화 및 음성 서비스' 프레임이 두드러지게 보였으며, IT 디바이스 생산업자(삼성)는 '사물인터넷(IoT) 종합지능시스템'과 관련한 프레임이 두드러지게 나타났다. 둘째, AI 스피커 시기별(연도별) 토픽 프레임의 경향은 1기(2014-2016년)에는 AI 기술 중심으로 발달하는 경향을 보였고, 2기(2017-2018년)에는 AI 기술과 이용자 간의 사회적 상호 작용과 관련되어 있었으며, 3기(2019년)에는 AI 기술 중심에서 이용자 중심으로 전환되는 경향을 나타냈다. QAP 분석 결과, AI 스피커 발달에서 사업자별과 시기별 뉴스 프레임이 미디어 담론의 결정요인에 의해 사회적으로 구성되는 것을 알 수 있었다. 본연구의 함의는 AI 스피커 진화는 사업자별, 발달시기별로 모회사 기업의 특성과 이용자 간의 상호작용으로 인한 공진화 과정이 나타냄을 발견할 수 있었다. 따라서 본 연구는 AI 스피커의 향후 전망을 예측하고 그에 따른 방향성을 제시하는 데 중요한 시사점을 제공한다.
이 연구는 토픽모델링을 적용하여 뉴스기사에 따른 태권도 동향을 연도별로 분석하는 것에 목적이 있다. 언론보도를 통한 태권도 동향을 살펴보기 위해 한국언론재단의 빅카인즈를 통해 뉴스기사와 태권도 전문 언론에 대한 기사를 수집하였다. 검색기간은 2000년 이전, 2001년~2010년, 2011년~2020년 3개의 구간으로 구분하여 검색하여 총 12,124개를 연구자료로 선정하였다. 토픽분석을 위해 전처리 과정을 거쳤으며, LDA 알고리즘을 활용하여 토픽분석을 수행하였다. 이때 모든분석은 python 3을 적용하였다. 그 결과 첫째, 연도별에 따른 언론기사 주제를 분석한 결과 2000년이전 1위는 '세계'. 2위는 '남북', 3위는 '올림픽'으로 나타났으며, 2001년~2010년 1위는 '세계', 2위는 '협회', 3위는 '세계태권도연맹'으로 조사되었다. 2011년~2020년 1위는 '세계', 2위는 '시범', 3위는 '국기원'으로 나타났다. 둘째, 2000년이전 뉴스기사를 토픽모델링으로 분석한 결과 토픽은 2가지로 구분되었다. 구체적으로 Topic 1은 '남·북 체육교류', Topic 2는 '올림픽 시범종목 채택'으로 선정되었다. 셋째, 2001년~2010년 뉴스기사를 토픽모델링으로 분석한 결과 토픽은 3가지로 선정되었다. Topic 1은 '태권도 시범공연 및 비리', Topic 2는 '무주태권도공원 조성', Topic 3은 '세계태권도축제'로 선정되었다. 넷째, 2011년~2020년 뉴스기사를 토픽모델링으로 분석한 결과 토픽은 3가지로 선정되었다. Topic 1은 '2018 평창동계올림픽 성공 개최', Topic 2는 '남북 태권도 합동시범공연 ', Topic 3은 '2017 무주세계태권도선수권대회'로 선정되었다.
정보 기술의 발전으로 온라인에서 활용 가능한 데이터의 양이 급속히 증대되고 있다. 이러한 빅데이터 시대에 많은 연구들이 통찰력을 발견하고 데이터의 효과를 입증하기 위해 노력하고 있다. 특히 관광 산업의 경우 정보에 민감한 사업으로 소셜 미디어의 영향력이 높고 소셜 미디어의 상품 후기에 소비자들이 영향을 많이 받아 많은 기업과 연구자들이 소셜 미디어를 분석하여 새로운 서비스 및 통찰력을 얻고자 시도하였다. 하지만 소셜 미디어의 후기는 텍스트로 이루어진 대표적인 비정형 데이터로 적절한 처리를 하지 않으면 분석에 활용할 수 없다. 또한 후기 데이터의 양이 방대함에 따라 사람이 직접 분석하기도 어려운 실정이다. 따라서, 본 연구에서는 이러한 소셜미디어 상의 온라인 후기로부터 직접 호텔의 서비스 품질 향상을 위한 통찰력을 추출할 수 있는 분석 방법을 제시하고자 한다. 이를 위해 본 연구에서는 먼저 후기 데이터에 포함되어 있는 주제어를 추출하는 토픽 마이닝 기법을 적용하였다. 토픽 마이닝은 대용량의 문서 집합으로부터 문서를 대표하는 단어 집합을 추출하는 기법을 의미하며 본 연구에서는 다양한 연구에서 활용되고 있는 LDA모형을 사용하여 토픽 마이닝을 수행하였다. 하지만, 토픽 마이닝 자체만으로는 주제어와 평점 사이의 관계를 도출할 수 없어 서비스 품질 향상을 위한 통찰력을 발견하기 어렵다. 그에 따라 본 연구에서는 토픽 마이닝의 결과값을 기반으로 의사결정나무 모형을 사용하여 주제어와 평점 사이의 관계를 도출하였다. 이러한 방법론의 유용성을 평가하기 위해 홍콩에 있는 4개 호텔의 온라인 후기를 수집하고 제안한 방법론의 분석 결과를 해석하는 실험을 진행하였다. 실험 결과 긍정 후기를 통해 각 호텔이 유지해야할 서비스 영역을 발견할 수 있었으며 부정 후기를 통해 개선해야할 서비스 영역을 도출할 수 있었다. 따라서, 본 연구에서 제안한 방법론을 사용하여 방대한 양의 후기 데이터로부터 서비스 개선 및 유지 영역을 발견할 수 있으리라 기대된다.
본 논문에서는 선형 판별분석 (LDA: Linear Discriminant Analysis)과 공통벡터 추출방법을 이용한 음성인식방법을 제안하였다. 음성신호는 화자의 성별, 나이, 출생지, 주위 잡음, 정신적 상태, 발성기관의 구조 등과 같은 다양한 정보를 포함하고 있다. 이로 인해 같은 음성신호라 할지라도 서로 다른 화자가 발성하게 되면 서로 다른 특성을 보이게 된다. 음성신호의 이러한 성질은 같은 음성군 (class)에 포함된 공통된 특성벡터를 추출하는 일을 상당히 어렵게 한다. 음성신호에서 공통된 특징 벡터를 추출하는 방법은 KLT (Karhunen-Loeve Transformation)와 같이 선형 대수적인 접근방법이 많이 사용되어지고 있으나, 본 논문에서는 M. Bilginer et al.이 제안한 공통벡터 추출 방법을 사용하였다. M. Bilginer et al.이 제안한 방법은 주어진 훈련 음성신호들에 대하여 최적의 공통 벡터를 추출하여 주면서 공통벡터 추출에 사용된 훈련 데이터에 대해서는 100%의 인식결과를 보여준다. 그러나 공통벡터 추출을 위한 훈련 음성신호의 수를 무한히 늘릴 수 없다는 점과 공통벡터들간의 구별정보 (discriminant information)가 정의되지 않았다는 단점이 있다. 본 논문에서는 단어그룹간 (class) 구별정보를 추출된 공통벡터와 결합해 단어간의 오인식률 (error rate)을 감소시킬 수 있는 방법과 공통벡터 추출방법에 적합한 파라미터 가공 방법을 제안하였다. 공통벡터 추출방법은 음성신호의 시간 축 정규화 방법과 벡터의 차원 크기에 따라 인식시간과 인식률에 영향을 받는다. 따라서 부적절한 시간 축 정렬과 너무 큰 벡터의 차원 수는 인식률 저하 등과 같이 알고리즘의 효율성을 떨어뜨린다. 본 논문에서 제안한 방법을 사용하여 실험한 결과 알고리즘의 효율성이 증가되었으며, 기존방법보다 약 2%정도의 향상된 인식률을 얻을 수 있었다.낮추는 효과를 나타내었다.다. 이상의 결과를 통하여 추출 온도와 용매 농도에 따른 수율의 차이가 있었으며 free radical 소거 활성에서는 종자 에탄을 추출물이 과피 에탄올 추출물 보다 145배 이상의 현저히 높은 활성을 나타내었다.을 나타내었다.'Lian(연)' : repeatability, continuance, plenty and intercommunicate, 2. 'Lian(연)'-'Lian(염)': integrity, 3. 'He (하)'-'He(화)' : peace, harmony and combination, 4. 'He(하)'-'He(하)' : clear river, 5.'He(하)'-'He(하)' ; all work goes well. When the Chinese use lotus patterns in lucky omen patterns, same pronunciation and pitch of Chinese language more prominent than natural properties or the image of Buddhism. I guess that it cause praying individual's peace and happiness more serious than philosophical meaning or symbol that base in Buddhism for ordinary people.ML., -9.00~12.49 and -19.81~19.81%, respectively). Therefore, it is concluded that the two formulations are bioequivalent for both the extent and the rate of absorption after single dose administration.ation.ion.ion.ation.ion.n. fibrosis, collagen bundle) was
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.