• Title/Summary/Keyword: LDA기법

Search Result 215, Processing Time 0.027 seconds

NFT(Non-Fungible Token) Patent Trend Analysis using Topic Modeling

  • Sin-Nyum Choi;Woong Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.41-48
    • /
    • 2023
  • In this paper, we propose an analysis of recent trends in the NFT (Non-Fungible Token) industry using topic modeling techniques, focusing on their universal application across various industrial fields. For this study, patent data was utilized to understand industry trends. We collected data on 371 domestic and 454 international NFT-related patents registered in the patent information search service KIPRIS from 2017, when the first NFT standard was introduced, to October 2023. In the preprocessing stage, stopwords and lemmas were removed, and only noun words were extracted. For the analysis, the top 50 words by frequency were listed, and their corresponding TF-IDF values were examined to derive key keywords of the industry trends. Next, Using the LDA algorithm, we identified four major latent topics within the patent data, both domestically and internationally. We analyzed these topics and presented our findings on NFT industry trends, underpinned by real-world industry cases. While previous review presented trends from an academic perspective using paper data, this study is significant as it provides practical trend information based on data rooted in field practice. It is expected to be a useful reference for professionals in the NFT industry for understanding market conditions and generating new items.

Face Recognition Using Tensor Subspace Analysis in Robot Environments (로봇 환경에서 텐서 부공간 분석기법을 이용한 얼굴인식)

  • Kim, Sung-Suk;Kwak, Keun-Chang
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.300-307
    • /
    • 2008
  • This paper is concerned with face recognition for human-robot interaction (HRI) in robot environments. For this purpose, we use Tensor Subspace Analysis (TSA) to recognize the user's face through robot camera when robot performs various services in home environments. Thus, the spatial correlation between the pixels in an image can be naturally characterized by TSA. Here we utilizes face database collected in u-robot test bed environments in ETRI. The presented method can be used as a core technique in conjunction with HRI that can naturally interact between human and robots in home robot applications. The experimental results on face database revealed that the presented method showed a good performance in comparison with the well-known methods such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) in distant-varying environments.

  • PDF

Performance Improvement of Variable Vocabulary Speech Recognizer (가변어휘 음성인식기의 성능개선)

  • Kim Seunghi;Kim Hoi-Rin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.21-24
    • /
    • 1999
  • 본 논문에서는 가변어휘 음성인식기의 성능개선 작업에 관한 내용을 기술하고 있다. 묵음을 포함한 총 40개의 문맥독립 음소모델을 사용한다. LDA 기법을 이용하여 동일차수의 특징벡터내에 보다 유용한 정보를 포함시키고, likelihood 계산시 가우시안 분포와 mixture weight에 대한 가중치를 달리 함으로써 성능향상을 볼 수 있었다. ETRI POW 3848 DB만을 사용하여 실험한 경우, $21.7\%$의 오류율 감소를 확인할 수 있었다. 잡음환경 및 어휘독립환경을 고려하여 POW 3848 DB와 PC 168 DB 및 PBW445 DB를 사용한 실험도 행하였으며, PBW 445 DB를 사용한 어휘독립 인식실험의 경우 $56.8\%$의 오류율 감소를 얻을 수 있었다.

  • PDF

Emotion Recognition and Expression using Facial Expression (얼굴표정을 이용한 감정인식 및 표현 기법)

  • Ju, Jong-Tae;Park, Gyeong-Jin;Go, Gwang-Eun;Yang, Hyeon-Chang;Sim, Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.295-298
    • /
    • 2007
  • 본 논문에서는 사람의 얼굴표정을 통해 4개의 기본감정(기쁨, 슬픔, 화남, 놀람)에 대한 특징을 추출하고 인식하여 그 결과를 이용하여 감정표현 시스템을 구현한다. 먼저 주성분 분석(Principal Component Analysis)법을 이용하여 고차원의 영상 특징 데이터를 저차원 특징 데이터로 변환한 후 이를 선형 판별 분석(Linear Discriminant Analysis)법에 적용시켜 좀 더 효율적인 특징벡터를 추출한 다음 감정을 인식하고, 인식된 결과를 얼굴 표현 시스템에 적용시켜 감정을 표현한다.

  • PDF

Numerical Analysis for the Piston-Driven Intake Flows using the Finite Element Method (피스톤에 의해 유입되는 유동에 대한 유한요소법을 이용한 수치해석)

  • Choi J. W.;Park C. K.
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.39-46
    • /
    • 1999
  • The FVM(Finite Volume Method) have been used mainly for the flow analyses in the piston-cylinder. The objective of the present study is to analyze numerically the piston-driven intake flows using the FEM(Finite Element Method). The FEM algorithm used in this study is 4-step time-splitting method which requires much less execution time and computer storage than the velocity-pressure integrated method and the penalty method. And the explicit Lax-Wendroff scheme is applied to nonlinear convective term in the momentum equations to prevent checkerboard pressure oscillations. Also, the ALE(arbitrary Lagrangian Eulerian) method is adopted for the moving grids. The calculated results show good agreement in comparison with those by the FVM and the experimental results by the LDA.

  • PDF

Topic modeling based similar user grouping and TV program recommendation for Smart TV (토픽 모델링을 이용한 유사 시청 사용자 그룹핑 및 TV 프로그램 추천 알고리듬)

  • Pyo, Shinjee;Kim, EunHui;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.117-120
    • /
    • 2012
  • 본 논문에서는 토픽 모델링 기반 TV 프로그램 유사 시청 사용자 그룹핑 및 이를 이용한 TV 프로그램 콘텐츠 추천 알고리듬을 제안하였다. 제안 기술은 토픽 모델링 기법 중 Latent Dirichlet Allocation(LDA) 방법을 이용하여 TV프로그램 시청 기록 내에서 은닉된 유사 사용자들을 그룹핑하고 이러한 유사 시청 사용자 그룹 정보를 이용하여 사용자에게 선호 TV 프로그램 콘텐츠를 자동으로 추천하는 알고리듬이다. 제안된 자동 추천 알고리듬의 성능평가를 위해 실제 TV 시청기록 데이터를 이용하여 훈련 기간과 검증 기간을 나누어 훈련 기간 동안 제안한 알고리듬을 이용하여 사용자 개인에 대한 추천 TV 프로그램 콘텐츠 목록을 생성하여 검증 기간 동안에 실제 추천된 TV프로그램을 얼마나 시청했는지를 측정하여 추천 정확도를 검증하였다.

  • PDF

Efficient Method for Image Representation Using Topic Modeling (토픽 모델링을 이용한 이미지의 효율적인 표현방법)

  • Lee, Ba-Do;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.319-322
    • /
    • 2011
  • 시각 피처를 사용한 이미지 표현은 이미지 검색 분야에서 이미 광범위하게 사용되고 있다. 특히 이미지 자체에 태깅이 되어있지 않거나 다른 추가 정보가 없는 경우에는 이미지 콘텐츠자체의 정보만으로 검색하기 위해서는 이러한 전처리가 필수적이다. 이미지로 부터 얻어진 시각적 피처들이 시각 단어로 사용되기 위해서는 k-means 와 같은 군집 알고리즘을 통한 시각적 피처의 양자화를 위한 전처리가 필요한데, 시각 단어의 개수 k를 정하는데 모호함이 있다. 본 논문에서는 임의의 k를 사용하더라도, 대표적 토픽 모델링 기법인 LDA (Latent Dirichlet Allocation)를 사용하여 데이터의 차원을 줄이게 되면 여러개의 시각적 단어들의 조합을 각각의 토픽이 나타낼 수 있게 됨을 이미지 검색 성능으로써 확인해 보고, 이러한 방법을 사용하면 표현형의 사이즈를 줄일 수 있고, 검색에 있어서도 이미지의 유사성을 더욱 효과적으로 표현할 수 있음을 확인해 본다.

Feature Extraction for Off-line Handwritten Character Recognition using SIFT Descriptor (SIFT 서술자를 이용한 오프라인 필기체 문자 인식 특징 추출 기법)

  • Park, Jung-Guk;Kim, Kyung-Joong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.496-500
    • /
    • 2010
  • 본 논문에서는 SIFT(Scale Invariant Feature Transform) 기술자를 이용하여 오프라인 필기체 문자 인식을 위한 특징 추출방법을 제안한다. 제안하는 방법은 문자의 획의 방향 정보를 제공하는 특징 벡터를 추출함으로써 오프라인 문자 인식에서 성능 향상을 기대할 수 있다. 테스트를 위해 MNIST 필기체 데이터베이스와 UJI Penchar2 필기체 데이터베이스를 이용하였고, BP(backpropagation)신경망과 LDA(Linear Discriminant Analysis), SVM(Support Vector Machine) 분류기에서 성능 테스트를 하였다. 본 논문의 실험결과에서는 일반적으로 사용되는 특징추출로부터 얻어진 특징에 제안된 특징추출을 정합하여 성능항샹을 보인다.

  • PDF

Research Trend Analysis by using Text-Mining Techniques on the Convergence Studies of AI and Healthcare Technologies (텍스트 마이닝 기법을 활용한 인공지능과 헬스케어 융·복합 분야 연구동향 분석)

  • Yoon, Jee-Eun;Suh, Chang-Jin
    • Journal of Information Technology Services
    • /
    • v.18 no.2
    • /
    • pp.123-141
    • /
    • 2019
  • The goal of this study is to review the major research trend on the convergence studies of AI and healthcare technologies. For the study, 15,260 English articles on AI and healthcare related topics were collected from Scopus for 55 years from 1963, and text mining techniques were conducted. As a result, seven key research topics were defined : "AI for Clinical Decision Support System (CDSS)", "AI for Medical Image", "Internet of Healthcare Things (IoHT)", "Big Data Analytics in Healthcare", "Medical Robotics", "Blockchain in Healthcare", and "Evidence Based Medicine (EBM)". The result of this study can be utilized to set up and develop the appropriate healthcare R&D strategies for the researchers and government. In this study, text mining techniques such as Text Analysis, Frequency Analysis, Topic Modeling on LDA (Latent Dirichlet Allocation), Word Cloud, and Ego Network Analysis were conducted.

Face Recognition using Fisherface Method with Fuzzy Membership Degree (퍼지 소속도를 갖는 Fisherface 방법을 이용한 얼굴인식)

  • 곽근창;고현주;전명근
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.6
    • /
    • pp.784-791
    • /
    • 2004
  • In this study, we deal with face recognition using fuzzy-based Fisherface method. The well-known Fisherface method is more insensitive to large variation in light direction, face pose, and facial expression than Principal Component Analysis method. Usually, the various methods of face recognition including Fisherface method give equal importance in determining the face to be recognized, regardless of typicalness. The main point here is that the proposed method assigns a feature vector transformed by PCA to fuzzy membership rather than assigning the vector to particular class. In this method, fuzzy membership degrees are obtained from FKNN(Fuzzy K-Nearest Neighbor) initialization. Experimental results show better recognition performance than other methods for ORL and Yale face databases.