• Title/Summary/Keyword: LD 테스트 장치

Search Result 2, Processing Time 0.016 seconds

Development of Laser Diode Tester and Position Compensation using Feedback with Machine Vision (Laser Diode Tester 개발과 비젼 피드백을 이용한 위치 보정)

  • 김재희;유철우;박상민;유범상
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.30-36
    • /
    • 2004
  • The development of LD(Laser Diode) tester and its control system based on the graphical programming language(LabVIEW) is addressed. The ill tester is used to check the optic power and the optic spectrum of the LD Chip. The emitter size of LD chip and the diameter of the Detector(optic fiber and photo diode) are very small, therefore the test device needs high accuracy. But each motion part of the test device could not accomplish high accuracy due to the limit of the mechanical performance. So, an image processing with machine vision is proposed to compensate for the error. By adopting our method we can reduce the error of position within $\pm$5$\mu\textrm{m}$.

The Alignment Evaluation for Patient Positioning System(PPS) of Gamma Knife PerfexionTM (감마나이프 퍼펙션의 자동환자이송장치에 대한 정렬됨 평가)

  • Jin, Seong Jin;Kim, Gyeong Rip;Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.203-209
    • /
    • 2020
  • The purpose of this study is to assess the mechanical stability and alignment of the patient positioning system (PPS) of Leksell Gamma Knife Perfexion(LGK PFX). The alignment of the PPS of the LGK PFX was evaluated through measurements of the deviation of the coincidence of the Radiological Focus Point(RFP) and the PPS Calibration Center Point(CCP) applying different weights on the couch(0, 50, 60, 70, 80, and 90 kg). In measurements, a service diode test tool with three diode detectors being used biannually at the time of the routine preventive maintenance was used. The test conducted with varying weights on the PPS using the service diode test tool measured the radial deviations for all three collimators 4, 8, and 16 mm and also for three different positions of the PPS. In order to evaluate the alignment of the PPS, the radial deviations of the correspondence of the radiation focus and the LGK calibration center point of multiple beams were averaged using the calibrated service diode test tool at three university hospitals in Busan and Gyeongnam. Looking at the center diode for all collimators 4, 8, and 16 mm without weight on the PPS, and examining the short and long diodes for the 4 mm collimator, the means of the validation difference, i.e., the radial deviation for the setting of 4, 8, and 16 mm collimators for the center diode were respectively measured to 0.058 ± 0.023, 0.079 ± 0.023, and 0.097 ± 0.049 mm, and when the 4 mm collimator was applied to the center diode, the short diode, and the long diode, the average of the radial deviation was respectively 0.058 ± 0.023, 0.078 ± 0.01 and 0.070 ± 0.023 mm. The average of the radial deviations when irradiating 8 and 16 mm collimators on short and long diodes without weight are measured to 0.07 ± 0.003(8 mm sd), 0.153 ± 0.002 mm(16 mm sd) and 0.031 ± 0.014(8 mm ld), 0.175 ± 0.01 mm(16 mm ld) respectively. When various weights of 50 to 90 kg are placed on the PPS, the average of radial deviation when irradiated to the center diode for 4, 8, and 16 mm is 0.061 ± 0.041 to 0.075 ± 0.015, 0.023 ± 0.004 to 0.034 ± 0.003, and 0.158 ± 0.08 to 0.17 ± 0.043 mm, respectively. In addition, in the same situation, when the short diode for 4, 8, and 16 mm was irradiated, the averages of radial deviations were 0.063 ± 0.024 to 0.07 ± 0.017, 0.037 ± 0.006 to 0.059 ± 0.001, and 0.154 ± 0.03 to 0.165 ± 0.07 mm, respectively. In addition, when irradiated on long diode for 4, 8, and 16 mm, the averages of radial deviations were measured to be 0.102 ± 0.029 to 0.124 ± 0.036, 0.035 ± 0.004 to 0.054 ± 0.02, and 0.183 ± 0.092 to 0.202 ± 0.012 mm, respectively. It was confirmed that all the verification results performed were in accordance with the manufacturer's allowable deviation criteria. It was found that weight dependence was negligible as a result of measuring the alignment according to various weights placed on the PPS that mimics the actual treatment environment. In particular, no further adjustment or recalibration of the PPS was required during the verification. It has been confirmed that the verification test of the PPS according to various weights is suitable for normal Quality Assurance of LGK PFX.