• 제목/요약/키워드: LCOH

검색결과 5건 처리시간 0.016초

재생열에너지 경제성 분석: 균등화열생산비용(LCOH) (Economic Analysis of Renewable Heat Energy: Levelized Cost of Heat (LCOH))

  • 이재석;조일현
    • 신재생에너지
    • /
    • 제20권1호
    • /
    • pp.52-60
    • /
    • 2024
  • This study conducted an economic analysis of renewable heat energy by estimating the levelized cost of heat production (LCOH) of ST and GSHP and comparing it with the cost of alternative fuels. The LCOH of ST ranged from 396.8 KRW/kWh to 578.7 KRW/kWh (small-scale), 270.3 KRW/kWh to 393.3 KRW/kWh (large-scale), and 156.3 KRW/kWh to 220.7 KRW/kWh for GSHP. The economic feasibility of ST and GSHP was analyzed by comparing the calculated LCOH and the fuel costs such as gas and kerosene prices. Moreover, scenario analyses were conducted for installation subsidies under the current system to examine the changes in the economics of renewable thermal energy.

CCU 시스템을 통한 균등화 수소원가 및 재무적 위험도 분석 (Analysis of Levelized Cost of Hydrogen and Financial Performance Risk by CCU System)

  • 손민희;이흥구;김경남
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.660-673
    • /
    • 2022
  • In achieving carbon neutrality and the hydrogen economy, the estimation of H2 cost is critical in terms of CCU technologies. This study analyzes LCOH of hydrogen produced by the carbon utilization unit with methane reforming and CO2 from thermal power plant. LCOH for H2 made with CO is estimated in three ways of Joint Cost Allocations with financial performance risk assessment. Regarding cost analysis, the zero value of LCOH is $6,003/ton. We found that the CCU technology has economic feasibility in terms of profitability. The sensitivity analysis result shows that the input ratio is more influential to the LCOH than other variables. Risk analysis presents the baseline price of zero value of LCOH - $8,408/ton, which is higher than the cost analysis - $6,003/ton. Mainly, the price variability of natural gas primarily affects the LCOH. The study has significant value in analyzing the financial performance risks as well as the cost of H2 produced by a Plasma-based CCU system.

Scale Factor를 이용한 국내 천연가스 개질식 수소충전소의 규모의 경제 분석 (Analysis of the Economy of Scale for Domestic Steam Methane Reforming Hydrogen Refueling Stations Utilizing the Scale Factor)

  • 김봉진;윤왕래;서동주
    • 한국수소및신에너지학회논문집
    • /
    • 제30권3호
    • /
    • pp.251-259
    • /
    • 2019
  • The aim of this study is to evaluate the economic feasibility of domestic on-site steam methane reforming (SMR) hydrogen refueling stations. We evaluated the levelized cost of hydrogen (LCOH) for the SMR hydrogen refueling stations, which have production capacities of 100 kg/day (SMR 100), 200 kg/day (SMR 200), and 500 kg/day (SMR 500) utilizing the scale factor. The main results indicated that the LCOH of SMR 100, SMR 200, and SMR 500 were 14,367 won/kg, 11,122 won/kg, and 8,157 won/kg, if the utilizations of hydrogen stations were 70%. These results imply that the production capacity of the domestic SMR hydrogen station should be greater than 500 kg/day to compete with other hydrogen stations when we consider the current sale price of hydrogen at the hydrogen stations.

저출력 및 고출력 SOEC 시스템의 경제성 분석 비교 (Economic Analysis and Comparison between Low-Power and High-Power SOEC Systems)

  • 뚜안앵;김영상;이동근;안국영;배용균;이상민
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.707-714
    • /
    • 2022
  • Hydrogen production using solid oxide electrolysis cells (SOEC) is a promising technology because of its efficiency, cleanness, and scalability. Especially, high-power SOEC system has received a lot of attention from researchers. This study compared and analyzed the low-power and high-power SOEC system in term of economic. By using revenue requirement method, levelized cost of hydrogen (LCOH) was calculated for comparison. In addition, the sensitivity analysis was performed to determine the dependence of hydrogen cost on input variables. The results indicated that high-power SOEC system is superior to a low-power SOEC system. In the capital cost, the stack cost is dominant in both systems, but the electricity cost is the most contributed factor to the hydrogen cost. If the high-power SOEC system combines with a nuclear power plant, the hydrogen cost can reach 3.65 $/kg when the electricity cost is 3.28 ¢/kWh and the stack cost is assumed to be 574 $/kW.

다양한 청록수소 생산 공정에 대한 경제성 분석 (Economic Comparison of Various Turquoise Hydrogen Production Processes)

  • 이수용;잡반티엔;무자히드 나심;김종환;이영덕
    • 한국수소및신에너지학회논문집
    • /
    • 제34권3호
    • /
    • pp.256-266
    • /
    • 2023
  • Hydrogen production can be classified based on the energy source, primary reactor type, and whether or not it emits carbon dioxide. Utilizing color representation proves to be an effective means of expressing these distinctive characteristics. Among the various clean hydrogen production techniques, there has been a growing interest in turquoise hydrogen production, which involves the decomposition of methane or other fossil fuels. This method offers advantages in terms of large-scale production and cost reduction through the sale of solid-carbon byproduct. In this study, an extensive literature review was conducted to select and analyze several promising candidates for turquoise hydrogen production processes. The efficiency and economics of these processes were evaluated using stream data reported in the literature sources. The findings indicate that the levelized cost of hydrogen production (LCOH) is significantly influenced by the sales of byproducts, specifically the solid-carbon and carbon monoxide byproducts.