Browse > Article
http://dx.doi.org/10.7316/KHNES.2022.33.6.707

Economic Analysis and Comparison between Low-Power and High-Power SOEC Systems  

TUANANH BUI (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM))
YOUNG SANG KIM (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM))
DONG KEUN LEE (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM))
KOOK YOUNG AHN (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM))
YONGGYUN BAE (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM))
SANG MIN LEE (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM))
Publication Information
Transactions of the Korean hydrogen and new energy society / v.33, no.6, 2022 , pp. 707-714 More about this Journal
Abstract
Hydrogen production using solid oxide electrolysis cells (SOEC) is a promising technology because of its efficiency, cleanness, and scalability. Especially, high-power SOEC system has received a lot of attention from researchers. This study compared and analyzed the low-power and high-power SOEC system in term of economic. By using revenue requirement method, levelized cost of hydrogen (LCOH) was calculated for comparison. In addition, the sensitivity analysis was performed to determine the dependence of hydrogen cost on input variables. The results indicated that high-power SOEC system is superior to a low-power SOEC system. In the capital cost, the stack cost is dominant in both systems, but the electricity cost is the most contributed factor to the hydrogen cost. If the high-power SOEC system combines with a nuclear power plant, the hydrogen cost can reach 3.65 $/kg when the electricity cost is 3.28 ¢/kWh and the stack cost is assumed to be 574 $/kW.
Keywords
SOEC; Hydrogen; Electrolysis; LCOH; Economic analysis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. S. Choksey, "What's the difference between gray, blue, and green hydrogen?", J. D. Power, 2021. Retrieved from https://www.jdpower.com/cars/shopping-guides/whats-the-difference-between-gray-blue-and-green-hydrogen.
2 D. Milani, A. Kiani, and R. McNaughton, "Renewable powered hydrogen economy from Australia's perspective", Int. J. Hydrogen Energy, Vol. 45, No. 46, 2020, pp. 24125-24145, doi: https://doi.org/10.1016/j.ijhydene.2020.06.041.   DOI
3 B. Lee, H. Chae, N. H. Choi, C. Moon, S. Moon, and H. Lim, "Economic evaluation with sensitivity and profitability analysis for hydrogen production from water electrolysis in Korea", Int. J. Hydrogen Energy, Vol. 42, No. 10, 2017, pp. 6462-6471, doi: https://doi.org/10.1016/j.ijhydene.2016.12.153.   DOI
4 D. Jang, J. Kim, D. Kim, W. B. Han, and S. Kang, "Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies", Energy Conversion and Management, Vol. 258, 2022, pp. 115499, doi: https://doi.org/10.1016/j.enconman.2022.115499.   DOI
5 T. Bui, Y. S. Kim, V. T. Giap, D. K. Lee, and K. Y. Ahn, "Parametric study on high power SOEC system", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 6, 2021, pp. 470-476, doi: https://doi.org/10.7316/KHNES.2021.32.6.470.   DOI
6 J. Cao, Y. Li, Y. Zheng, S. Wang, W. Zhang, X. Qin, G. Geng, and B. Yu, "A novel solid oxide electrolysis cell with micro/nano channel anode for electrolysis at ultra-high current density over 5 A cm-2", Advanced Energy Materials, Vol. 12, No. 28, 2022, pp. 2200899, doi: https://doi.org/10.1002/aenm.202200899.   DOI
7 H. Shimada, T. Yamaguchi, H. Kishimoto, H. Sumi, Y. Yamaguchi, K. Nomura, and Y. Fujishiro, "Nanocomposite electrodes for high current density over 3 A cm-2 in solid oxide electrolysis cells", Nature Communications, Vol. 10, No. 1, 2019, pp. 5432, doi: https://doi.org/10.1038/s41467019134265.   DOI
8 A. Hauch, R. Kungas, P. Blennow, A. B. Hansen, J. B. Hansen, B. V. Mathiesen, and M. B. Mogensen, "Recent advances in solid oxide cell technology for electrolysis", Science, Vol. 370, No. 6513, 2020, pp. eaba6118, doi: https://doi.org/10.1126/science.aba6118.   DOI
9 A. Brisse and J. Schefold, "High temperature electrolysis at EIFER, main achievements at cell and stack level", Energy Procedia, Vol. 29, 2012, pp. 5363, doi: https://doi.org/10.1016/j.egypro.2012.09.008.   DOI
10 E. Tang, T. Wood, C. Brown, M. Casteel, M. Pastula, M. Richards, and R. Petri, "Solid oxide based electrolysis and stack technology with ultrahigh electrolysis current density (>3A/cm2) and efficiency", FuelCell Energy, Inc., 2018. Retrieved from https://www.osti.gov/servlets/purl/1513461.
11 R. Knibbe, M. L. Traulsen, A. Hauch, S. D. Ebbesen, and M. Mogensen, "Solid oxide electrolysis cells: degradation at high current densities", J. Electrochem. Soc., Vol. 157, No. 8, pp. B1209B1217. Retrieved from https://iopscience.iop.org/article/10.1149/1.3447752.   DOI
12 A. Wood, H. He, T. Joia, M. Krivy, and D. Steedman, "Communication-electrolysis at high efficiency with re markable hydrogen production rates", J. Electrochem. Soc., Vol. 163, No. 5, 2016, pp. F327-F329. Retrieved from https://iopscience.iop.org/article/10.1149/2.0341605jes.   DOI
13 V. T. Giap, Y. D. Lee, Y. S. Kim, T. Bui, and K. Y. Ahn, "New definition of levelized cost of energy storage and its application to reversible solid oxide fuelcell", Energy, Vol. 239, 2022, pp. 122220, doi: https://doi.org/10.1016/j.energy.2021.122220.   DOI
14 Q. Fang, L. Blum, R. Peters, M. Peksen, P. Batfalsky, and D. Stolten, "SOFC stack performance under high fuel utilization", Int. J. Hydrogen Energy, Vol. 40, No. 2, 2015, pp. 1128-1136, doi: https://doi.org/10.1016/j.ijhydene.2014.11.094.   DOI
15 A. Bejan, G. Tsatsaronis, and M. J. Moran, "Thermal design and optimization", John Wiley & Sons, Inc., USA, 1996.
16 A. Trattner, M. Klell, and F. Radner, "Sustainable Hydrogen Society - vision, findings and development of a hydrogen economy using the example of Austria", Int. J. Hydrogen Energy, Vol. 47, No, 4, 2022, pp. 2059-2079, doi: https://doi.org/10.1016/j.ijhydene.2021.10.166.   DOI
17 M. M. Whiston, I. M. L. Azevedo, S. Litster, C. Samaras, K. S. Whitefoot, and J. F. Whitacre, "Meeting U.S. solid oxide fuel cell targets", Joule, Vol. 3, No. 9, 2019, pp. 2060-2065. Retrieved from https://www.cell.com/joule/pdfExtended/S25424351(19)303629.   DOI
18 United Nations, "What is the Kyoto protocol?", United Nations Framework Convention on Climate Change. Retrieved from https://unfccc.int/kyoto_protocol?gclid=EAIaIQobChMIq4WC6vnbgIVB62WCh3KgQlIEAAYASAAEgKGFfD_BwE.
19 United Nations Treaty Collection, "Paris Agreement", 2015. Retrieved from https://treaties.un.org/Pages/ViewDetails.aspx?src=IND&mtdsg_no=XXVII7d&chapter=27&clang=_en.
20 R. Rapier, "Life cycle emissions of hydrogen", The Fourth Generation, 2020. Retrieved from https://4thgeneration.energy/lifecyclesemissionsofhydrogen/.
21 C. Song, "Hydrogen and syngas production and purification technologies", John Wiley & Sons, Inc., USA, 2009, pp. 1-13.
22 G. A. Hackett, "Systems analysis of solid oxide fuel cell plant configurations", U.S. DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, 2018. Retrieved from https://netl.doe.gov/sites/default/files/netlfile/FE22-Hackett-Systems-Analysis-of-SOFC-Plan-tCon-figurations.pdf.
23 Electric Power Statistics Information System Retrieved from https://epsis.kpx.or.kr/epsisnew/selectMain.do?locale=.
24 https://www.matche.com.
25 M. S. Peters and K. D. Timmerhaus, "Plant design and economics for chemical engineers", 2nd ed, McGraw-Hill, USA, 2003.